Novel Fluorinated Pyrazoline Based Ethers: Synthesis, Characterization and Antimicrobial Evaluation

https://doi.org/10.24017/science.2025.2.18

Abstract views: 0 / PDF downloads: 0 / PDF downloads: 0

Authors

Abstract

In response to the growing global threat of antimicrobial resistance, this work seeks to synthesize and analyze chalcone-derived pyrazoline derivatives and assess their antibacterial efficacy against the Staphylococcus aureus   and Escherichia coli).  A series of pyrazoline compounds were synthesized using both classical step-wise and one-pot synthetic strategies, involving Claisen–Schmidt condensation of 4-(4-fluorobenzyl) oxy acetophenone with various substituted benzaldehydes that subsequently undergo cyclization with phenyl hydrazine. The chemical structures of the produced chalcones and their corresponding pyrazolines were characterized using FTIR, ¹H-NMR, and ¹³C-NMR spectroscopy. Physicochemical characterization revealed the products were obtained in high yields and were sufficiently stable for isolation, with improved yields observed via the one-pot method. Antibacterial activity was assessed using the disk diffusion technique at multiple concentrations (200–800 ppm). The results demonstrated that pyrazoline derivatives exhibited significantly higher inhibition zones, particularly against S. aureus, compared to their chalcone precursors. Compounds 5a, 5c, and 5f had the most significant antibacterial efficacy, whereas chalcones showed minimal to no action against E. coli. The findings confirm the superior bioactivity of the pyrazoline ring system and suggest the crucial impact of electron- giving and electron-removing substituents on antibacterial potential. This research underscores one-pot synthesis as operationally simple and reducing waste generation by eliminating the need for intermediate isolation, thereby offering a more efficient and practical route, time-saving method for producing structurally varied, physiologically active pyrazolines, presenting attractive possibilities for the development of novel antibacterial medicines.

Keywords:

Benzyloxy, Chalcone, ClaisenSchmidt condensation, Pyrazoline, Gram-positive and Gram-negative bacteria, One-pot synthesis.

References

G. E. Forcados, A. Muhammad, O. O. Oladipo, S. Makama, and C. A. Meseko, “Metabolic implications of oxidative stress and inflammatory process in sars-cov-2 pathogenesis: therapeutic potential of natural antioxidants,” Frontiers in Cellular and Infection Microbiology., vol. 11, p. 654813, May 2021, doi: 10.3389/fcimb.2021.654813. DOI: https://doi.org/10.3389/fcimb.2021.654813

K. M. Qadir et al., "Synthesis, molecular docking study and antibacterial activity of new pyrazoline derivatives," Bulle-tin of the Chemical Society of Ethiopia, vol. 39, no. 5, pp. 955-966, 2025, doi: 10.4314/bcse.v39i5.11. DOI: https://doi.org/10.4314/bcse.v39i5.

A. Özdemir, G. Turan-Zitouni, Z. Asım Kaplancıklı, G. Revial, F. Demirci, and G. İşcan, “Preparation of some pyrazo-line derivatives and evaluation of their antifungal activities,” Journal of Enzyme Inhibition and Medicinal Chemistry., vol. 25, no. 4, pp. 565–571, Aug. 2010, doi: 10.3109/14756360903373368. DOI: https://doi.org/10.3109/14756360903373368

J. O’Neill. ''Tackling drug-resistant infections globally: final report and recommendations," London, UK: HM Govern-ment & Wellcome Trust, May 2016. Available: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.

Interagency Coordination Group on Antimicrobial Resistance (IACG). No time to wait: securing the future from drug-resistant infections—report to the Secretary-General of the United Nations. Geneva, Switzerland: World Health Organ-ization, Apr. 2019. Available: https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf.

M. Linden, S. Hofmann, A. Herman, N. Ehler, R. M. Bär, and S. R. Waldvogel. "Electrochemical synthesis of pyra-zolines and pyrazoles via [3+2] dipolar cycloaddition," Angewandte Chemie International Edition, vol. 62, no. 9, p. e202214820, Feb. 2023, doi:10.1002/anie.202214820. DOI: https://doi.org/10.1002/anie.202214820

M. S. Praceka, S. Megantara, R. Maharani, and M. Muchtaridi. "Comparison of various synthesis methods and synthe-sis parameters of pyrazoline derivatives," Journal of Advanced Pharmaceutical Technology & Research, vol. 12, no. 4, pp. 321–326, Oct. 2021, doi: 10.4103/japtr.JAPTR_252_21. DOI: https://doi.org/10.4103/japtr.JAPTR_252_21

M. R. Shaaban, A. S. Mayhoub, and A. M. Farag. "Recent advances in the therapeutic applications of pyrazolines," Expert Opinion on Therapeutic Patents, vol. 22, no. 3, pp. 253–291, Mar. 2012, doi: 10.1517/13543776.2012.667403.

A. Ahmad, A. Husain, S. A. Khan, Mohd. Mujeeb, and A. Bhandari, “Synthesis, antimicrobial and antitubercular ac-tivities of some novel pyrazoline derivatives,” Journal of the Saudi Chemical Society., vol. 20, no. 5, pp. 577–584, Sept. 2016, doi: 10.1016/j.jscs.2014.12.004.

S. K. Ali, A. M. Murwih, K. Melati, K. N. N. S. Nik Mohammad, and M. Musthahimah. "Design, synthesis, characteri-zation, and cytotoxicity activity evaluation of monochalcones and new pyrazoline derivatives," Journal of Applied Pharmaceutical Science, vol. 10, no. 8, pp. 20-36, Aug. 2020, doi: 10.7324/JAPS.2020.10803. DOI: https://doi.org/10.7324/JAPS.2020.10803

B. Evranos Aksöz, S. S. Gürpinar, and M. Eryilmaz, “Antimicrobial activities of some pyrazoline and hydrazone de-rivatives,” Turkish Journal of Pharmaceutical Sciences., vol. 17, no. 5, pp. 500–505, Oct. 2020, doi: 10.4274/tjps.galenos.2019.42650. DOI: https://doi.org/10.4274/tjps.galenos.2019.42650

S. Jang, J.-C. Jung, and S. Oh. "Synthesis of 1,3-diphenyl-2-propen-1-one derivatives and evaluation of their biological activities," Bioorganic & Medicinal Chemistry, vol. 15, no. 12, pp. 4098–4105, June 2007, doi: 10.1016/j.bmc.2007.03.077. DOI: https://doi.org/10.1016/j.bmc.2007.03.077

M. M. K. Mervat and T. N.-A. Omar. "Synthesis, characterization, anti-inflammatory, and antimicrobial evaluation of new 2-pyrazoline derivatives derived from guaiacol," Iraqi Journal of Pharmaceutical Sciences, vol. 32, Suppl., pp. 254–261, Nov. 2023. doi:10.31351/vol32issSuppl.pp254-261. DOI: https://doi.org/10.31351/vol32issSuppl.pp254-261

S. Kumari, S. K. Paliwal, and R. Chauhan. "An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity," Current Bioactive Compounds, vol. 14, no. 1, pp. 39–47, Apr. 2018, doi:10.2174/1573407212666161101152735. DOI: https://doi.org/10.2174/1573407212666161101152735

Y. Vásquez-Martínez et al. "Antimicrobial, anti-inflammatory and antioxidant activities of polyoxygenated chalcones," Journal of the Brazilian Chemical Society, vol. 30, no. 2, pp. 286–304, 2019, doi:10.21577/0103-5053.20180177. DOI: https://doi.org/10.21577/0103-5053.20180177

S. N. A. Bukhari, M. Jasamai, I. Jantan, and W. Ahmad. "Review of methods and various catalysts used for chalcone synthesis," Mini-Reviews in Organic Chemistry, vol. 10, no. 1, pp. 73–83, Mar. 2013, doi:10.2174/1570193X11310010006. DOI: https://doi.org/10.2174/1570193X11310010006

S. Mastachi‐Loza, T. I. Ramírez‐Candelero, L. J. Benítez‐Puebla, A. Fuentes‐Benítes, C. González‐Romero, and M. A. Vázquez. "Chalcones, a privileged scaffold: Highly versatile molecules in [4+2] cycloadditions," Chemistry – An Asian Journal, vol. 17, no. 20, p. e202200706, Oct. 2022, doi: 10.1002/asia.202200706. DOI: https://doi.org/10.1002/asia.202200706

M. Rani and Y. Mohamad, “Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives,” Journal of Saudi Chemical Society, vol. 18, no. 5, pp. 411–417, Nov. 2014, doi: 10.1016/j.jscs.2011.09.002. DOI: https://doi.org/10.1016/j.jscs.2011.09.002

Y. H. Lee et al. "A new synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells," Experimental & Molecular Medicine, vol. 44, no. 6, p. 369, 2012, doi:10.3858/emm.2012.44.6.042. DOI: https://doi.org/10.3858/emm.2012.44.6.042

S. Kumar, S. Bawa, S. Drabu, R. Kumar, and H. Gupta. "Biological activities of pyrazoline derivatives -a recent devel-opment," Recent Patents on Anti-Infective Drug Discovery, vol. 4, no. 3, pp. 154–163, Nov. 2009, doi: 10.2174/157489109789318569. DOI: https://doi.org/10.2174/157489109789318569

M. Mantzanidou, E. Pontiki, and D. Hadjipavlou-Litina. "Pyrazoles and pyrazolines as anti-inflammatory agents," Molecules, vol. 26, no. 11, p. 3439, June 2021, doi: 10.3390/molecules26113439. DOI: https://doi.org/10.3390/molecules26113439

M. Gomes et al. "Chalcone derivatives: promising starting points for drug design," Molecules, vol. 22, no. 8, p. 1210, July 2017, doi: 10.3390/molecules22081210. DOI: https://doi.org/10.3390/molecules22081210

K. Mezgebe, G. Terfassa, and G. Letebrhan, “Synthesis and pharmacological activities of chalcone derivatives bearing N-heterocyclic moieties,” American Chemical Society Omega, vol. 8, pp. 35503–35523, 2023, doi: 10.1021/acsomega.3c01035. DOI: https://doi.org/10.1021/acsomega.3c01035

S. A. Lahsasni, F. H. Al Korbi, and N. A.-A. Aljaber. "Synthesis, characterization and evaluation of antioxidant activi-ties of some novel chalcones analogues," Chemistry Central Journal, vol. 8, no. 1, p. 32, Dec. 2014, doi: 10.1186/1752-153X-8-32. DOI: https://doi.org/10.1186/1752-153X-8-32

A. A. WalyEldeen, S. Sabet, H. M. El-Shorbagy, I. A. Abdelhamid, and S. A. Ibrahim. "Chalcones: Promising therapeu-tic agents targeting key players and signaling pathways regulating the hallmarks of cancer," Chemico-Biological Interac-tions, vol. 369, p. 110297, Jan. 2023, doi: 10.1016/j.cbi.2022.110297. DOI: https://doi.org/10.1016/j.cbi.2022.110297

X. Fang, B. Yang, Z. Cheng, P. Zhang, and M. Yang. "Synthesis and antimicrobial activity of novel chalcone deriva-tives," Research on Chemical Intermediates, vol. 40, no. 4, pp. 1715–1725, Apr. 2014, doi: 10.1007/s11164-013-1076-5. DOI: https://doi.org/10.1007/s11164-013-1076-5

M. Johnson et al., “Design, synthesis, and biological testing of pyrazoline derivatives of combretastatin-A4,” Bioorganic & Medicinal Chemistry Letters., vol. 17, no. 21, pp. 5897–5901, Nov. 2007, doi: 10.1016/j.bmcl.2007.07.105. DOI: https://doi.org/10.1016/j.bmcl.2007.07.105

J. Uddin, S. W. Ali Shah, M. Zahoor, R. Ullah, and A. Alotaibi. "Chalcones: the flavonoid derivatives synthesis, charac-terization, their antioxidant and in vitro/in vivo antidiabetic potentials," Heliyon, vol. 9, no. 11, p. e22546, Nov. 2023, doi: 10.1016/j.heliyon.2023.e22546. DOI: https://doi.org/10.1016/j.heliyon.2023.e22546

K. V. Sashidhara et al. "Identification of quinoline-chalcone hybrids as potential antiulcer agents," European Journal of Medicinal Chemistry, vol. 89, pp. 638–653, Jan. 2015, doi: 10.1016/j.ejmech.2014.10.068. DOI: https://doi.org/10.1016/j.ejmech.2014.10.068

M. H. Nematollahi, M. Mehrabani, Y. Hozhabri, M. Mirtajaddini, and S. Iravani. "Antiviral and antimicrobial applica-tions of chalcones and their derivatives: from nature to greener synthesis," Heliyon, vol. 9, no. 10, p. e20428, Oct. 2023, doi: 10.1016/j.heliyon.2023.e20428. DOI: https://doi.org/10.1016/j.heliyon.2023.e20428

G. B. Souza et al. "Synthesis of chalcone derivatives by Claisen-Schmidt condensation and in vitro analyses of their antiprotozoal activities," Natural Product Research, vol. 38, no. 8, pp. 1326–1333, Apr. 2024, doi: 10.1080/14786419.2022.2140337. DOI: https://doi.org/10.1080/14786419.2022.2140337

D. Matiadis and M. Sagnou, “Pyrazoline hybrids as promising anticancer agents: an up-to-date overview,” Internation-al Journal of Molecular Sciences., vol. 21, no. 15, p. 5507, July 2020, doi: 10.3390/ijms21155507. DOI: https://doi.org/10.3390/ijms21155507

R. B. Birari, S. Gupta, C. G. Mohan, and K. K. Bhutani, “Antiobesity and lipid lowering effects of Glycyrrhiza chalcon-es: Experimental and computational studies,” Phytomedicine, vol. 18, no. 8–9, pp. 795–801, June 2011, doi: 10.1016/j.phymed.2011.01.002. DOI: https://doi.org/10.1016/j.phymed.2011.01.002

T. Yamamoto et al. "Anti-allergic activity of naringenin chalcone from a tomato skin extract," Bioscience, Biotechnology, and Biochemistry, vol. 68, no. 8, pp. 1706–1711, Jan. 2004, doi: 10.1271/bbb.68.1706. DOI: https://doi.org/10.1271/bbb.68.1706

S. Cho et al. "Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects," Biochemical and Biophysical Research Communications, vol. 413, no. 4, pp. 637–642, Oct. 2011, doi: 10.1016/j.bbrc.2011.09.026. DOI: https://doi.org/10.1016/j.bbrc.2011.09.026

M. Roucan, M. Kielmann, S. Connon, and M. Senge, “Conformational control of nonplanar free base porphyrins: to-wards bifunctional catalysts of tunable basicity,” Chemical Communications, vol. 54, no. 1, pp. 26–29, 2018, doi:10.1039/C7CC08099A. DOI: https://doi.org/10.1039/C7CC08099A

P. Pinto et al. "Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity," European Journal of Medicinal Chemistry, vol. 184, p. 111752, Dec. 2019, doi: 10.1016/j.ejmech.2019.111752. DOI: https://doi.org/10.1016/j.ejmech.2019.111752

F. Tok, M. O. Doğan, B. Gürbüz, and B. Koçyi̇ği̇t-Kaymakçioğlu. "Synthesis of novel pyrazoline derivatives and evalua-tion of their antimicrobial activity," Journal of Research in Pharmacy, vol. 26, no. 5, pp. 1453–1460, 2022, doi: 10.29228/jrp.238. DOI: https://doi.org/10.29228/jrp.238

B.-Y. Shen, Y. Yang, X.-X. Zhao, C. Wu, X.-Y. Zhu, and Y. Li. "Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics," European Journal of Medicinal Chemistry, vol. 188, p. 111957, Nov. 2020, doi: 10.1016/j.ejmech.2022.114885. DOI: https://doi.org/10.1016/j.ejmech.2022.114885

B. Varghese, S. N. Al-Busafi, F. O. Suliman, and S. M. Z. Al-Kindy. "Unveiling a versatile heterocycle: pyrazoline – a review," RSC Advances, vol. 7, no. 74, pp. 46999–47016, 2017, doi: 10.1039/C7RA08939B. DOI: https://doi.org/10.1039/C7RA08939B

L. Fauzi’ah and T. D. Wahyuningsih. "Synthesis of 1-phenyl-3-(4’-nitrophenyl)-5-(3’,4’-dimethoxy-6’-nitrophenyl)-2-pyrazoline and its antibacterial activity". in Proc. 14th Int. Symp. Therapeutic Ultrasound, Las Vegas, NV, USA, 2017, p. 020051, doi: 10.1063/1.4978124. DOI: https://doi.org/10.1063/1.4978124

R. A. Menezes, C. N. Bhuvaneshwari, H. Venkatachalam, and K. S. Bhat. "Focused review on applications of chalcone based compounds in material science," Discover Applied Sciences, vol. 7, no. 8, p. 814, Jul. 2025, doi: 10.1007/s42452-025-07478-0. DOI: https://doi.org/10.1007/s42452-025-07478-0

N. Maciejewska et al. "Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer," Scientific Reports, vol. 12, no. 1, p. 3703, Mar. 2022, doi: 10.1038/s41598-022-07691-6. DOI: https://doi.org/10.1038/s41598-022-07691-6

M. Mustafa and Y. A. Mostafa. "A facile synthesis, drug-likeness, and in silico molecular docking of certain new az-idosulfonamide–chalcones and their in vitro antimicrobial activity," Monatshefte für Chemie - Chemical Monthly, vol. 151, no. 3, pp. 417–427, Mar. 2020, doi: 10.1007/s00706-020-02568-8. DOI: https://doi.org/10.1007/s00706-020-02568-8

T. Bollenbach, "Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolu-tion,” Current Opinion in Microbiology, vol. 27, pp. 1–9, Oct. 2015, doi: 10.1016/j.mib.2015.05.008. DOI: https://doi.org/10.1016/j.mib.2015.05.008

Z. Zhao et al., “Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect,” European Journal of Me-dicinal Chemistry, vol. 186, p. 111893, Jan. 2020, doi: 10.1016/j.ejmech.2019.111893. DOI: https://doi.org/10.1016/j.ejmech.2019.111893

L. L. Silver. "Appropriate targets for antibacterial drugs," Cold Spring Harbor Perspectives in Medicine, vol. 6, no. 12, pp. a030239, Dec. 2016, doi: 10.1101/cshperspect.a030239. DOI: https://doi.org/10.1101/cshperspect.a030239

S. Mohamady, B. Kralt, S. K. Samwel, and S. D. Taylor. "Efficient one-pot, two-component modular synthesis of 3,5-disubstituted pyrazoles," ACS Omega, vol. 3, no. 11, pp. 15566–15574, Nov. 2018, doi: 10.1021/acsomega.8b02304. DOI: https://doi.org/10.1021/acsomega.8b02304

A. S. Nair et al., “Development of halogenated pyrazolines as selective monoamine oxidase-b inhibitors: deciphering via molecular dynamics approach,” Molecules, vol. 26, no. 11, p. 3264, May 2021, doi: 10.3390/molecules26113264. DOI: https://doi.org/10.3390/molecules26113264

V. F. Traven, D. A. Cheptsov, S. M. Dolotov, and I. V. Ivanov. "Control of the fluorescence of laser dyes by photooxida-tion of dihydrohetarenes," Dyes and Pigments, vol. 158, pp. 104–113, Nov. 2018, doi: 10.1016/j.dyepig.2018.05.023. DOI: https://doi.org/10.1016/j.dyepig.2018.05.023

F. E. Hawaiz, A. J. Hussein, and M. K. Samad. "One-pot three-component synthesis of some new azo-pyrazoline deriv-atives," European Journal of Chemistry, vol. 5, no. 2, pp. 233–236, Jun. 2014, doi: 10.5155/eurjchem.5.2.233-236.979. DOI: https://doi.org/10.5155/eurjchem.5.2.233-236.979

S. Farooq and Z. Ngaini. "Recent synthetic methodologies for chalcone synthesis (2013–2018)," Current Organic Chemis-try and Applied Technologies, vol. 6, no. 3, pp. 184–192, Sep. 2019, doi: 10.2174/2213337206666190306155140. DOI: https://doi.org/10.2174/2213337206666190306155140

V. V. Salian, B. N. Narayana, K. B. Sarojini, and K. Byrappa, “A comprehensive review on recent developments in the field of biological applications of potent pyrazolines derived from chalcone precursors,” Letters in Drug Design & Dis-covery, vol. 15, no. 5, pp. 487-503, 2018. doi:10.2174/1570180814666170703164221. DOI: https://doi.org/10.2174/1570180814666170703164221

R. S. Sabah, Z. S. Al-Garawi, and M. N. Al-jibouri. "The utilities of pyrazolines encouraged synthesis of a new pyrazo-line derivative via ring closure of chalcone, for optimistic neurodegenerative applications," Mosul Journal of Science, vol. 33, no. 1, pp. 21–31, Mar. 2022, doi: 10.23851/mjs.v33i1.1067. DOI: https://doi.org/10.23851/mjs.v33i1.1067

N. A. Nordin, A. R. Ibrahim, and Z. Ngaini. "Biological studies of novel aspirin-chalcone derivatives bearing variable substituents," Journal of Applied Biology, vol. 11, no. 1, pp. 20–31, Mar. 2020, doi: 10.37231/jab.2020.11.1.185. DOI: https://doi.org/10.37231/jab.2020.11.1.185

K. N. Ganesh, et al., “Green chemistry: a framework for a sustainable future,” Environmental Science and Technology Letters, vol. 8, no. 7, pp. 487–491, Jun. 2021, doi: 10.1021/acs.iecr.1c02213. DOI: https://doi.org/10.1021/acs.estlett.1c00434

T. Taj, R. R. Kamble, T. M. Gireesh, R. K. Hunnur, and S. B. Margankop. "One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities," European Journal of Medicinal Chemistry, vol. 46, no. 9, pp. 4366–4373, Sept. 2011, doi: 10.1016/j.ejmech.2011.07.007.

B. Maleki, G. E. Kahoo, and R. Tayebee. "One-pot synthesis of polysubstituted imidazoles catalyzed by an ionic liquid," Organic Preparations and Procedures International, vol. 47, no. 6, pp. 461–472, Nov. 2015, doi: 10.1080/00304948.2015.1088757. DOI: https://doi.org/10.1080/00304948.2015.1088757

B. Maleki, R. Tayebee, M. Kermanian, and S. Sedigh Ashrafi. "One-Pot Synthesis of 1,8-Dioxodecahydroacridines and Polyhydroquinoline using 1,3-Di (bromo or chloro)-5,5-Dimethylhydantoin as a novel and green catalyst under sol-vent-free conditions," Journal of the Mexican Chemical Society, vol. 57, no. 4, Oct. 2017, doi: 10.29356/jmcs.v57i4.192. DOI: https://doi.org/10.29356/jmcs.v57i4.192

Y. Hayashi. "Pot economy and one-pot synthesis," Chemical Science, vol. 7, no. 2, pp. 866–880, 2016, doi: 10.1039/C5SC02913A. DOI: https://doi.org/10.1039/C5SC02913A

I. K. Ugi, B. Ebert, and W. Hörl. "Formation of 1,1′-iminodicarboxylic acid derivatives, 2,6-diketo-piperazine and dibenzodiazocine-2,6-dione by variations of multicomponent reactions," Chemosphere, vol. 43, no. 1, pp. 75–81, Apr. 2001, doi: 10.1016/S0045-6535(00)00326-X. DOI: https://doi.org/10.1016/S0045-6535(00)00326-X

S. Sahu, M. Banerjee, A. Samantray, C. Behera, and M. Azam, “Synthesis, analgesic, anti-inflammatory and antimi-crobial activities of some novel pyrazoline derivatives,” Tropical Journal of Pharmaceutical Research., vol. 7, no. 2, pp. 961–968, June 2008, Available: https://www.tjpr.org/admin/12389900798187/2008_7_2_6.pdf. DOI: https://doi.org/10.4314/tjpr.v7i2.14664

R. Filler and R. Saha. "Fluorine in medicinal chemistry: A century of progress and a 60-year retrospective of selected highlights," Future Medicinal Chemistry, vol. 1, no. 5, pp. 777–791, Aug. 2009, doi: 10.4155/fmc.09.65. DOI: https://doi.org/10.4155/fmc.09.65

S. N. A. Bukhari, X. Zhang, I. Jantan, H. Zhu, M. W. Amjad, and V. H. Masand. "Synthesis, molecular modeling, and biological evaluation of novel 1,3-diphenyl-2-propen-1-one based pyrazolines as anti-inflammatory agents," Chemistry & Biology Drug Design, vol. 85, no. 6, pp. 729–742, Jun. 2015, doi: 10.1111/cbdd.12457. DOI: https://doi.org/10.1111/cbdd.12457

C. Zhou and Y. Wang, “Recent researches in triazole compounds as medicinal drugs,” Current Medicinal Chemistry, vol. 19, no. 2, pp. 239–280, Jan. 2012, doi:10.2174/092986712803414213. DOI: https://doi.org/10.2174/092986712803414213

J. Akhtar, A. A. Khan, Z. Ali, R. Haider, and M. Shahar Yar. "Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities," European Journal of Medicinal Chemistry, vol. 125, pp. 143–189, Jan. 2017, doi: 10.1016/j.ejmech.2016.09.023. DOI: https://doi.org/10.1016/j.ejmech.2016.09.023

B. P. Bandgar et al. "Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents," Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 18, pp. 5839–5844, Sept. 2012, doi: 10.1016/j.bmcl.2012.07.080. DOI: https://doi.org/10.1016/j.bmcl.2012.07.080

K. L. Kees et al. "New potent antihyperglycemic agents in db/db mice: Synthesis and structure−activity relationship studies of (4-substituted benzyl)(trifluoromethyl)pyrazoles and -pyrazolones;" Journal of Medicinal Chemistry, vol. 39, no. 20, pp. 3920–3928, Jan. 1996, doi: 10.1021/jm960444z. DOI: https://doi.org/10.1021/jm960444z

S. N. Shelke, G. R. Mhaske, V. D. B. Bonifácio, and M. B. Gawande. "Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives," Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 17, pp. 5727–5730, Sept. 2012, doi: 10.1016/j.bmcl.2012.06.072. DOI: https://doi.org/10.1016/j.bmcl.2012.06.072

D. Matiadis, “Strategies and methods for the synthesis of 2‐pyrazolines: recent developments (2012–2022),” Advanced Synthesis & Catalysis., vol. 365, no. 12, pp. 1934–1969, June 2023, doi: 10.1002/adsc.202300373. DOI: https://doi.org/10.1002/adsc.202300373

O. S. Faleye, B. R. Boya, J.-H. Lee, I. Choi, and J. Lee. "Halogenated antimicrobial agents to combat drug-resistant path-ogens". Pharmacological Reviews, vol. 76, no. 1, pp. 90–141, Jan. 2024, doi: 10.1124/pharmrev.123.000863. DOI: https://doi.org/10.1124/pharmrev.123.000863

K. Karale, S. J. Takate, S. P. Salve, B. H. Zaware, and S. S. Jadhav. "Synthesis and antibacterial screening of novel fluo-rine containing heterocycles," Oriental Journal of Chemistry, vol. 31, no. 1, pp. 307–315, Mar. 2015, doi: 10.13005/ojc/310135. DOI: https://doi.org/10.13005/ojc/310135

Y. Sugiyama, K. Maeda, and K. Toshimoto. "Is ethnic variability in the exposure to rosuvastatin explained only by genetic polymorphisms in OATP1B1 and BCRP or should the contribution of intrinsic ethnic differences in OATP1B1 be considered?," Journal of Pharmaceutical Sciences, vol. 106, no. 9, pp. 2227–2230, Sept. 2017, doi: 10.1016/j.xphs.2017.04.074. DOI: https://doi.org/10.1016/j.xphs.2017.04.074

D. L. Pavia, A small-scale approach to organic laboratory techniques, 3rd ed., Brooks/Cole Laboratory series for organ-ic chemistry. Belmont, CA: Brooks/Cole, Cengage Learning, 2011. ISBN: 978-1-4390-4932-7.

S. Veerasingam et al. "Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review," Critical Reviews in Environmental Science and Technology, vol. 51, no. 22, pp. 2681–2743, Nov. 2021, doi: 10.1080/10643389.2020.1807450. DOI: https://doi.org/10.1080/10643389.2020.1807450

F. Hayat, A. Salahuddin, S. Umar, and A. Azam, “Synthesis, characterization, antiamoebic activity and cytotoxicity of novel series of pyrazoline derivatives bearing quinoline tail,” European Journal of Medicinal Chemistry., vol. 45, no. 10, pp. 4669–4675, Oct. 2010, doi: 10.1016/j.ejmech.2010.07.028. DOI: https://doi.org/10.1016/j.ejmech.2010.07.028

A. R. Kennedy, Z. R. Kipkorir, C. I. Muhanji, and M. O. Okoth. "4-(Benzyloxy) benzaldehyde," Acta Crystallographica Section E: Structure Reports Online, vol. 66, no. 8, pp. o2110–o2110, Aug. 2010, doi: 10.1107/S1600536810027200. DOI: https://doi.org/10.1107/S1600536810027200

Y. Ma, C. Yang, Z. Li, Z. Li, and J. Ding, “1-(4-Benzyloxy-2-hydroxyphenyl) ethanone,” Acta Crystallographica Section E: Structure Reports Online, vol. 67, no. 12, pp. o3225–o3225, Dec. 2011, doi:10.1107/S160053681104637X. DOI: https://doi.org/10.1107/S160053681104637X

S. Sharma, S. Kaur, T. Bansal, and J. Gaba. "Review on synthesis of bioactive pyrazoline derivatives," Chemical Science Transactions, vol. 3, no. 3, pp. 861-875, Jun. 2014, doi: 10.7598/cst2014.796. DOI: https://doi.org/10.7598/cst2014.796

Y. Baqi and A. H. Ismail. "Microwave-assisted synthesis of near-infrared chalcone dyes: a systematic approach," ACS Omega, vol. 10, no. 7, pp. 7317–7326, Feb. 2025, doi: 10.1021/acsomega.4c11066. DOI: https://doi.org/10.1021/acsomega.4c11066

B. Salehi, et al., “Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence,” Frontiers in Pharmacology, vol. 11, p. 592654, Jan. 2021. doi:10.3389/fphar.2020.592654.M. DOI: https://doi.org/10.3389/fphar.2020.592654

S. Gok, M. Murat Demet, A. Özdemir, and G. Turan-Zitouni, “Evaluation of antidepressant-like effect of 2-pyrazoline derivatives,” Medicinal Chemistry Research., vol. 19, no. 1, pp. 94–101, Feb. 2010, doi: 10.1007/s00044-009-9176-x. DOI: https://doi.org/10.1007/s00044-009-9176-x

R. H. H. Salih et al. "One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promis-ing SARS-CoV-2 main protease inhibitors," Research on Chemical Intermediates, vol. 48, no. 11, pp. 4729–4751, Nov. 2022, doi: 10.1007/s11164-022-04831-5. DOI: https://doi.org/10.1007/s11164-022-04831-5

T. Taj, R. R. Kamble, T. M. Gireesh, R. K. Hunnur, and S. B. Margankop, “One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities,” European Journal of Medicinal Chemistry., vol. 46, no. 9, pp. 4366–4373, Sept. 2011, doi: 10.1016/j.ejmech.2011.07.007. DOI: https://doi.org/10.1016/j.ejmech.2011.07.007

S. O. Mamand, D. Abdul, and F. E. Hawaiz. "Traditional, one-pot three component synthesis and anti-bacterial evalua-tions of some new pyrazoline derivatives," Egyptian Journal of Chemistry, vol. 65, no. 10, pp. 239-248, Oct. 2022, doi: 10.21608/ejchem.2022.129819.5727. DOI: https://doi.org/10.21608/ejchem.2022.129819.5727

J. Hudzicki, “Kirby-Bauer disk diffusion susceptibility test protocol,” American Society for Microbiology, Dec. 2009. Available: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/kirby-bauer-disk-diffusion-susceptibility-test-protocol-pdf.pdf.

D. Olender et al. "Bis-chalcones obtained via one-pot synthesis as the anti-neurodegenerative agents and their effect on the HT-22 cell line," Heliyon, vol. 10, no. 17, p. e37147, Sept. 2024, doi: 10.1016/j.heliyon.2024.e37147. DOI: https://doi.org/10.1016/j.heliyon.2024.e37147

C. J. Thomson, D. M. Barber, and D. J. Dixon. "One-pot catalytic enantioselective synthesis of 2-pyrazolines," An-gewandte Chemie International Edition, vol. 58, no. 8, pp. 2469-2473, 2019, doi: 10.1002/anie.201811471. DOI: https://doi.org/10.1002/anie.201811471

T. A. Fitri, R. Hendra, and A. Zamri. "One-pot synthesis and molecular docking study of pyrazoline derivatives as an anticancer agent: Pyrazoline derivatives as an anticancer agent," Pharmacy Education, vol. 23, no. 2, pp. 260–265, June 2023, doi: 10.46542/pe.2023.232.260265. DOI: https://doi.org/10.46542/pe.2023.232.260265

S. Farooq and Z. Ngaini. "One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines," Tetrahedron Letters, vol. 61, no. 4, p. 151416, Jan. 2020, doi: 10.1016/j.tetlet.2019.151416. DOI: https://doi.org/10.1016/j.tetlet.2019.151416

C. Shekhar Yadav et al., “Recent advances in the synthesis of pyrazoline derivatives from chalcones as potent phar-macological agents: A comprehensive review,” Results in Chemistry., vol. 7, p. 101326, Jan. 2024, doi: 10.1016/j.rechem.2024.101326. DOI: https://doi.org/10.1016/j.rechem.2024.101326

V. Lellek, C. Chen, W. Yang, J. Liu, X. Ji, and R. Faessler. "An efficient synthesis of substituted pyrazoles from one-pot reaction of ketones, aldehydes, and hydrazine monohydrochloride," Synlett, vol. 29, no. 08, pp. 1071–1075, May 2018, doi: 10.1055/s-0036-1591941. DOI: https://doi.org/10.1055/s-0036-1591941

M. R. Shaaban, A. S. Mayhoub, and A. M. Farag, “Recent advances in the therapeutic applications of pyrazolines,” Expert Opinion on Therapeutic Patents, vol. 22, no. 3, pp. 253–291, Mar. 2012, doi: 10.1517/13543776.2012.667403. DOI: https://doi.org/10.1517/13543776.2012.667403

D. C. Kaseman et al., "Chemical analysis of fluorobenzenes via multinuclear detection in the strong heteronuclear j-coupling regime," Applied Sciences, vol. 10, no. 11, p. 3836, 2020. doi: 10.3390/app10113836. DOI: https://doi.org/10.3390/app10113836

A. Ahmad, A. Husain, S. A. Khan, M. Mujeeb, and A. Bhandari, "Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives," Journal of Saudi Chemical Society, vol. 20, no. 5, pp. 577-584, Sep. 2016, doi: 10.1016/j.jscs.2014.12.004. DOI: https://doi.org/10.1016/j.jscs.2014.12.004

S. Gomha, M. Abdallah, M. Abd El-Aziz, and N. Serag. "Ecofriendly one-pot synthesis and antiviral evaluation of nov-el pyrazolyl pyrazolines of medicinal interest," Turkish Journal of Chemistry, vol. 40, pp. 484–498, 2016, doi: 10.3906/kim-1510-25. DOI: https://doi.org/10.3906/kim-1510-25

M. A. Romero Reyes, S. Dutta, M. Odagi, C. Min, and D. Seidel. "Catalytic enantioselective synthesis of 2-pyrazolines via one-pot condensation/6π-electrocyclization: 3,5-bis(pentafluorosulfanyl)-phenylthioureas as powerful hydrogen bond donors," Chemical Science., vol. 15, no. 37, pp. 15456–15462, 2024, doi: 10.1039/D4SC04760E. DOI: https://doi.org/10.1039/D4SC04760E

S. Mishra et al. "Ferrocenyl–cymantrenyl hetero-bimetallic chalcones: synthesis, structure and biological properties," Journal of Molecular Structure, vol. 1085, pp. 162–172, Apr. 2015, doi: 10.1016/j.molstruc.2014.12.070. DOI: https://doi.org/10.1016/j.molstruc.2014.12.070

I. Saleh et al. "Design, synthesis, and antibacterial activity of N -(trifluoromethyl)phenyl substituted pyrazole deriva-tives," RSC Medicinal Chemistry, vol. 12, no. 10, pp. 1690–1697, 2021, doi: 10.1039/D1MD00230A. DOI: https://doi.org/10.1039/D1MD00230A

M. M. Kandeel, N. A. Abdou, H. H. Kadry, and R. M. El-Masry. "Synthesis and antitumor activity of some novel hetero-cyclic compounds derived from chalcone analogues," Organic Chemistry, 2014. Available: https://repository.msa.edu.eg/items/1212f5a9-3889-43b5-ad5b-1d6514a67b54/full.

C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, and Z. Miao. "Chalcone: a privileged structure in medicinal chem-istry," Chemical Reviews, vol. 117, no. 12, pp. 7762–7810, June 2017, doi: 10.1021/acs.chemrev.7b00020. DOI: https://doi.org/10.1021/acs.chemrev.7b00020

N. Das, B. Dash, M. Dhanawat, and S. Shrivastava, “Design, synthesis, preliminary pharmacological evaluation, and docking studies of pyrazoline derivatives,” Chemical Papers., vol. 66, no. 1, pp. 67-74, Jan. 2012, doi: 10.2478/s11696-011-0106-2. DOI: https://doi.org/10.2478/s11696-011-0106-2

Md. A. Rahman and A. A. Siddiqui. "Pyrazoline derivatives: a worthy insight into the recent advances and potential pharmacological activities," International Journal of Pharmaceutical Sciences and Drug Research, vol. 2, no. 3, pp. 165–175, July 2010, doi: 10.25004/IJPSDR.2010.020302 DOI: https://doi.org/10.25004/IJPSDR.2010.020302

Z. A. Kaplancıklı, A. Özdemir, G. Turan-Zitouni, M. D. Altıntop, and Ö. D. Can. "New pyrazoline derivatives and their antidepressant activity," European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 4383–4387, Sept. 2010, doi:' 10.1016/j.ejmech.2010.06.011. DOI: https://doi.org/10.1016/j.ejmech.2010.06.011

M. Al-Anazi, M. N. El-Nabi, A. El-Ashmawy, and A. A. Al-Majid, “Synthesis, anticancer activity and docking studies of pyrazoline and pyrimidine derivatives as potential epidermal-growth-factor-receptor (EGFR) inhibitors,” Arabian Journal of Chemistry, vol. 14, no. 10, pp. 103397, Oct. 2021. doi: 10.1016/j.arabjc.2022.103864. DOI: https://doi.org/10.1016/j.arabjc.2022.103864

S. Hassan. "Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives," Mole-cules, vol. 18, no. 3, pp. 2683–2711, Feb. 2013, doi: 10.3390/molecules18032683. DOI: https://doi.org/10.3390/molecules18032683

D. Havrylyuk, O. Roman, and R. Lesyk, “Synthetic approaches, structure activity relationship and biological applica-tions for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids,” European Journal of Medicinal Chemistry., vol. 113, pp. 145–166, May 2016, doi: 10.1016/j.ejmech.2016.02.030. DOI: https://doi.org/10.1016/j.ejmech.2016.02.030

How to Cite

[1]
Z. J. Mustafa, T. M. Salih, and F. E. Hawaiz, “Novel Fluorinated Pyrazoline Based Ethers: Synthesis, Characterization and Antimicrobial Evaluation”, KJAR, vol. 10, no. 2, pp. 284–306, Dec. 2025, doi: 10.24017/science.2025.2.18.

Article Metrics

Published

06-12-2025