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1.     Introduction 

In the realm of statistical analysis, multivariate linear regression serves as a cornerstone technique 

for understanding and predicting the complex relationships among multiple variables (dependent and 

independent) [1]. Multivariate linear regression aims to find the best-fitting line that minimizes the sum 

of the squared differences between the observed and predicted values of the dependent variable [2]. Its 

application spans diverse fields, from finance to healthcare, where accurate modeling can drive critical 

decisions. However, the presence of outliers poses a significant challenge, as these anomalous observa-

tions can skew results and undermine the integrity of the analysis. Consequently, effectively addressing 

outliers is crucial for ensuring the reliability of regression models [3]. Outliers are defined as data points 

significantly different from the rest. An outlier may be due to variability in the measurement or it may 

indicate experimental errors; the former are sometimes legitimate observations and the latter should be 

excluded from the data set. There are two types of outliers, where univariate outliers are outliers in a 
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Abstract: Outliers in multivariate linear regression models can significantly distort 

parameter estimates, leading to biased results and reduced predictive accuracy. 

These outliers may occur in the dependent variable or both independent and de-

pendent variables, resulting in large residual values that compromise model reli-

ability. Addressing outliers is essential for improving the accuracy and robustness 

of regression models.  In this study, proposes a Hampel filter-modified algorithm 

to dynamically detect and mitigate extreme values, enhancing parameter estima-

tion and predictive performance. The algorithm optimizes window size and 

threshold parameters to minimize mean square errors, making it a robust ap-

proach for handling outliers in multivariate regression analysis. To assess its ef-

fectiveness, simulations and real datasets were analyzed using a MATLAB-based 

implementation. The algorithm was compared with the classical Hampel ap-

proach to evaluate improvements in outlier detection and suppression. The results 

indicate that the proposed method effectively identifies and removes extreme val-

ues, leading to improved parameter estimation accuracy, enhanced model stabil-

ity, and greater predictive performance and the performance was analyzed using 

the Mean Squared Error (MSE). The adaptive nature of the filter minimizes the 

impact of outliers, ensuring a more reliable regression model. The Hampel filter-

modified algorithm provides an effective and adaptive solution for handling out-

liers in multivariate regression models. By dynamically identifying and mitigating 

extreme values, it enhances model accuracy, strengthens predictive capabilities, 

and ensures greater resilience against data variability. This approach offers a val-

uable tool for researchers and practitioners working with outlier-prone datasets, 

significantly improving the reliability of multivariate regression analysis. 
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single variable and multivariate outliers are outliers that occur in a multivariate space and are detected 

based on the combination of multiple variables [4]. The significance of this study lies in its focus on the 

Hampel filter, a robust statistical method designed to detect and mitigate the impact of outliers within 

multivariate datasets. Traditional methods often rely on univariate techniques, which may overlook 

the interconnectedness of variables and lead to misleading conclusions. In contrast, the Hampel filter 

employs a more nuanced approach by utilizing robust measures of central tendency, allowing for a 

comprehensive assessment of the data points while minimizing the influence of outliers [5]. The steps 

involved in the Hampel filter are first to select a window of size (k), the number of data points to be 

considered on each side of the central point, and to calculate the median (M). Calculating the median 

of the values within the window, and determining the Median Absolute Deviation (MAD), which is a 

robust measure of the variability in the data, identifies outliers and compares each data point to the 

median within the window. If the absolute deviation of a point from the mean is greater than the chosen 

multiple of MAD, it is marked as an outlier. Finally, outliers can be replaced by the median value to 

reduce their impact but substituting outliers can lead to biased parameter estimates if the substitution 

is done incorrectly, i.e. replacing outliers can be useful in some cases, but it must be done cautiously to 

avoid introducing bias and losing valuable information. A key development of Hampel's filter centers 

on using median and MAD to determine outliers, providing a robust alternative to traditional methods 

that rely heavily on the mean and standard deviation [6].  

The primary aim of the Hampel filter is to improve the robustness of the statistical analyses by 

reducing the influence of outliers, which can distort the results of conventional methods such as linear 

regression. These outliers can result from measurement errors, data entry mistakes, or the inherent 

variability of the data. A way to respond to this is by replacing the detected outliers with values that 

are more consistent with the bulk of the data. This replacement helps to reduce the impact of outliers 

on subsequent analyses and improves the robustness of statistical models by reducing the sensitivity 

to outliers. This results in more reliable and stable parameter estimates that maintain the integrity of 

the data's structure by only modifying outliers rather than applying broad transformations that could 

distort the entire dataset. In this research, focused on window size (k), and thresholding (nd), Hampel 

gives these parameters and the use of a method was undertaken to obtain the ideal values for these 

parameters to give the best estimate of the model's lowest Mean Square Error (MSE). They vary accord-

ing to the data and the amount of outliers, and the parameter has recently become a powerful mathe-

matical technique to approximate the outliers of the regression line and compare the results before and 

after excluding the outliers using less MSE. A model with less MSE is better and in this study, the 

proposed model is the best because it has the smallest MSE [5].  

The layout of this paper is structured as follows: section 2 discusses related works. Section 3 out-

lines the methodology employed in applying the Hampel filter within the context of multivariate linear 

regression. Section 4 presents the results of our simulations and real-world case studies, followed by a 

discussion in section 5 that interprets these findings. Finally, section 6 concludes the paper and suggests 

avenues for future research. 

2.      Related Works 

The challenges posed by outliers in multivariate linear regression have been the subject of exten-

sive academic inquiry, with numerous studies highlighting their detrimental impact on model accuracy 

and reliability. Classical statistical methods, such as least squares estimation, are notably sensitive to 

extreme values which can lead to significant biases in coefficient estimation and increased prediction 

errors [4]. As highlighted by numerous researchers [7, 8] conventional approaches often overlook the 

complexity of real-world datasets, making them inadequate in scenarios where the presence of outliers 

is prevalent. This inadequacy constitutes the central research problem in this field—namely, the need 

for effective outlier detection and management strategies that enhance the robustness of multivariate 

linear regression analyses. Among the existing methodologies, various robust statistical techniques 

have been explored, including robust regression methods like Theil–Sen estimates and M-estimators, 

as well as robust covariance estimators [9, 10]. However, these systems still experience limitations when 
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addressing high-dimensional data and fail to effectively isolate or mitigate the effects of outliers with-

out sacrificing the overall model’s integrity.  

The primary objective of this section is to assess the efficacy of the Hampel filter as a robust outlier 

detection technique that specifically addresses these shortcomings in multivariate linear regression 

contexts. By evaluating its performance against traditional methods, this research seeks to determine 

the extent to which the Hampel filter can preserve data integrity while minimizing the adverse effects 

of outliers [11, 12] Additionally, the literature reveals a gap in comprehensive studies illustrating the 

integration of this filtering technique within multivariate frameworks, which this research aims to ad-

dress. The significance of examining the existing literature is vast, both academically and practically. A 

thorough understanding of prior research provides a foundational basis for justifying the adoption of 

the Hampel filter in contemporary analytical practices. It also emphasizes the importance of developing 

advanced statistical techniques that can be reliably deployed in various fields, such as finance and 

healthcare, where accurate data analysis is critical [13, 14] Furthermore, as outliers can obscure true 

relationships in the data, the findings from this research section will contribute to fostering more accu-

rate statistical models, thereby enhancing decision-making processes based on empirical evidence [15]. 

This convergence of rigorous academic inquiry and practical application underscores the importance 

of addressing outlier management in statistical analysis today. 

 3.     Materials and Methods 

After applying the Hampel filter to the datasets, multivariate linear regression models were con-

structed using the cleaned data. The models were formulated to evaluate the relationships among the 

independent and dependent variables, with special attention to the coefficients and their statistical sig-

nificance. For comparison, traditional regression models were also developed using the original da-

tasets, which included outliers, to demonstrate the impact of outlier presence on model performance. 

3.1. Multivariate Multiple Linear Regression 

It is a statistical method used to predict multiple dependent variables using more than one inde-

pendent variable. It is also employed to ascertain the quantitative correlation between said variables 

[1]. The variable you want to predict should be continuous, and your data should meet the other as-

sumptions such as linearity, no outliers, a similar spread across range, the normality of the residuals, 

and have no multicollinearity [16]. 

3.1.1. Multivariate Regression Model 

A multivariate regression model aims to predict the dependent variables using multiple independ-

ent variables [17]. It is an extension of the multiple regression model which predicts a single dependent 

variable, and the multivariate regression model has specific assumptions (e.g., normality, independ-

ence, linearity) similar to the multiple regression model, Increasing the hypothesis of a linear relation-

ship between the dependent variables [18]. Mathematically, the multivariate regression model can be 

written as: 

𝑌 = 𝑋𝐵 + 𝐸                           (1) 

𝑌1=𝛽01+𝛽11𝑋1+⋯+𝛽𝑞1𝑋𝑞+𝑒1 

𝑌2=𝛽02+𝛽12𝑋1+⋯+

[

y11 y12

y21 y22

⋯ y1p

⋯ y2p

⋮ ⋮
yn1 yn2

⋮ ⋮
⋯ ynp

] = [

1
1
⋮
1

   

x11

x21

⋮
xn1

    

x12  …
x22  …

⋮
xn2   …

    

x1q

x2q

⋮
xnq

]

[
 
 
 
β01

β11

⋮
βq1

    

β02  …
β12  …

⋮
βq2   …

    

β0p

β1p

⋮
βqp]

 
 
 

+ [

e11 e12

e21 e22

⋯ e1p

⋯ e2p

⋮ ⋮
en1 en2

⋮ ⋮
⋯ enp

]                  (2) 
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Where Y (n × p) is the matrix of dependent variables, X [n × (q + 1)] is the matrix of independent 

variables, β[(q + 1) × p] is the matrix of coefficients, and E (n × p) is the matrix of error terms. Thus, each 

row of (Y) contains the values of the (p) dependent variables, dependent variables must be quantitative 

data, while independent variables can be quantitative or qualitative. Each column of (Y) consists of the 

(n) observations on one of the (p) variables. Regression Coefficients (β): Each coefficient represents the 

change in the dependent variable for a one-unit change in the corresponding independent variable, 

holding all other variables constant. Here, there is no problem of multicollinearity between the inde-

pendent variables, so there is no joint interpretation for the Coefficients [19]. 

3.1.2. Least Squares Estimation in the Multivariate Model 

The goal of least square estimation (LSE) is to find the coefficient matrix (𝛽) that minimizes the 

sum of squared residuals:       

𝐸 = 𝑌 − 𝑋𝛽                                                                                                 (3) 

The Sum of Squared Residuals (S) is: 

𝑆 = 𝑡𝑟(𝐸𝑇𝐸) = [(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽)]                                                (4) 

Where (tr) denotes the trace of a matrix [20].  

Estimation of (𝛽): To minimize (S), we take the derivative of (S) concerning (𝛽) and set it to zero: 

𝑑𝑆

𝑑𝛽
= −2𝑋𝑇(𝑌 − 𝑋𝛽) = 0, Solving for 𝛽: 

𝑋𝑇𝑌 = 𝑋𝑇𝑋𝛽 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌              (5) 

This equation gives the LSE for the coefficient matrix (β). 

The unbiased LSE possesses the property of being an unbiased estimator, if (β) is expected [E] = 0. 

The expected value of (β) is equivalent to the true coefficient matrix and the least variance among all 

unbiased linear estimators. The estimator has a minimum variance, a property known as the Gauss-

Markov theorem, and finally normality. If the Error terms (E) are normally distributed, then the LSE 

for (β) is also normally distributed [2, 21]. 

3.2. Outliers 

Outliers are data points that deviate significantly from the general pattern of the data. In the con-

text of multivariate regression, outliers can have a significant effect on the estimated coefficients and 

overall model fit. Identifying and handling outliers is critical to ensure robust and accurate model esti-

mation [22]. 

 

An outlier in a multivariate dataset is an observation that lies an unusual distance from other ob-

servations. Outliers can be caused by variability in the data, measurement errors, and other anomalies 

[4]. 

 

Detection techniques are essential for addressing the issue of outliers in multivariate linear regres-

sion analysis, and the Hampel filter is a widely employed tool for this purpose [23, 24]. The Mahalano-

bis distance, residual plots, Cook's distance, and Leverage points are among the commonly utilized 

detection methods in multivariate linear regression analysis [25]. The Mahalanobis distance and Ham-

pel filter are commonly used methods for anomaly detection in multivariate linear regression analysis. 

Mahalanobis distance calculates the distance between a data point and the dataset's center, while the 

Hampel filter accurately identifies and handles outliers within the dataset [26, 27]. The formula for 

Mahalanobis distance is as follows: 

http://doi.org/10.24017/science.2024.1.1
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𝐷2 = (𝑋 − 𝜇)𝑇𝛴−1(𝑋 − 𝜇)                                   (6) 

Where (  is the observation vector, (  is the mean vector, and (  is the covariance. 

To establish an appropriate cut off value, the Mahalanobis distance can be analysed using a chi-

square distribution with degrees of freedom (DF) equal to the number of variables in the data. The 

cutoff value is determined based on a selected significance level (α), which dictates the stringency of 

identifying outliers [28]. The process of detecting outliers in multivariate linear regression involves de-

termining DF and selecting a significance level [29]. The cut off can be calculated using the chi-square 

cumulative distribution function. Adjusting the significance level can result in the stricter or more leni-

ent detection of outliers [30]. Visualizing the Mahalanobis distances through a histogram or Q-Q plot 

can provide a helpful visual confirmation of outliers by overlaying the chi-square distribution [31]. 

When it comes to dealing with outliers, especially in the context of multivariate linear regression, robust 

methods are preferred to minimize their influence. Here are three robust methods often used alongside 

Mahalanobis distance: 

 

 

The fast minimum covariance determinant (FMCD) is an effective estimator utilized in multivari-

ate analysis to pinpoint and diminish the impact of outliers on covariance matrix computations. Com-

mon estimators such as the sample covariance matrix are vulnerable to outliers, resulting in a potential 

distortion of the data's structure and a substantial influence on models. It identifies a subset of data 

with the smallest determinant, reducing the influence of outliers on models and ensuring a more accu-

rate covariance matrix [32]. Here are some important points to understand about FMCD, along with a 

detailed explanation of the key equations: 

• The aim of the Minimum Covariance Determinant (MCD) is to select a subset H⊂{1,2,...,n} that 

consists of h observations (where h≤n) and leads to the smallest determinant of the covariance 

matrix computed from this subset: 

�̂�𝑀𝐶𝐷 =
𝑎𝑟𝑔 𝑚𝑖𝑛

det(𝛴𝐻)
       𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 𝑜𝑓 𝑠𝑖𝑧𝑒 ℎ                                                          (7) 

In this case, (𝛴𝐻) is the covariance matrix that is obtained from subset 𝐻.  

• The subset size, denoted as h, is often chosen to balance robustness and efficiency. The specific 

value of h determines the breakdown point of the estimator, where higher values of h result in 

increased resilience against outliers [33]. 

• The mean 𝜇𝐻 and covariance 𝛴𝐻 for the chosen subset 𝐻 are calculated as follows: 

𝜇𝐻 =
1

ℎ
∑ 𝑥𝑖

𝑖∈𝐻

                                                                                                     (8) 

𝛴𝐻 =
1

ℎ − 1
∑(𝑥𝑖 − 𝜇𝐻)(𝑥𝑖 − 𝜇𝐻)𝑇                                                             (9)

𝑖∈𝐻

 

• The covariance matrix determinant det (𝛴𝐻) is iteratively minimized by refining the subset 𝐻 

to identify the one with the lowest determinant. This process can be described as: 

𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
      𝑎𝑟𝑔 min det(𝛴𝐻)

𝐻
                                                                       (10) 

• Once the most effective subset 𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is identified, the Mahalanobis distance 𝐷(𝑥𝑖) for each 

observation 𝑥𝑖 is computed using μ𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and  𝛴𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 : 

𝐷(𝑥𝑖) = √(𝑥𝑖 − 𝜇𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙
)𝑇 ∑ (𝑥𝑖 − 𝜇𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙

)
−1

𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙

                           (11) 

This distance is utilized to pinpoint any outliers (observations that have Mahalanobis distances 

significantly higher than the mean of 𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙). 

http://doi.org/10.24017/science.2024.1.1
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• To maintain consistency, it is common to adjust the final covariance estimate by a correction 

factor, typically represented by c, to consider both the sample size and subset size [34]: 

�̂�𝐹𝑀𝐶𝐷 = 𝑐 ∗ 𝛴𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙
                                                                                         (12) 

 

The Orthogonalized Gnanadesikan-Kettenring (OGK) estimator is a reliable technique for estimat-

ing the covariance matrix when dealing with outliers, especially in high-dimensional data scenarios. It 

overcomes the limitations of traditional estimators like sample covariance, which can generate inaccu-

rate estimates due to outliers. The OGK estimator uses robust methods for pairwise covariance and 

converts the data into orthogonal components to streamline and enhance the process of estimating co-

variance. The OGK process can be delineated through the following set of procedures: 

• Standardized Data:  by employing robust univariate scale estimators like MAD to mitigate the 

impact of outlier values and standardize each variable effectively [21]. 

• Pairwise Covariance Estimation: For each pair of variables (Xi, Xj), calculate robust pairwise 

covariances, (�̂�𝑖𝑗) using robust bivariate statistics. The Gnanadesikan-Kettenring estimator for 

covariance between two variables Xi and Xj is: 

�̂�𝑖𝑗 =
1

4
(𝑀𝐴𝐷(𝑋𝑖 + 𝑋𝑗)

2
− 𝑀𝐴𝐷(𝑋𝑖 − 𝑋𝑗)

2
)                                      (13) 

Where MAD represents the robust scale of the sum and the difference of the two variables. 

• Initial covariance matrix: The initial covariance matrix �̂� is constructed using these pairwise 

covariances (�̂�𝑖𝑗) and robust variances for each variable. 

• Orthogonalization: To stabilize the initial estimate, the OGK method performs an orthogonali-

zation (often via eigenvalue decomposition) on the initial covariance matrix �̂�: 

�̂� = 𝑃Λ𝑃𝑇                                                                                                        (14) 

Where P is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The data is then 

transformed into an orthogonal basis defined by P, with transformed data Y=XP. 

• Final Covariance Matrix Estimation: After orthogonalizing, robust univariate scales (such as 

MAD) are applied to each component of (Y) to get a robust scale matrix. The final robust co-

variance matrix ΣOGK is given by: 

Σ𝑂𝐺𝐾 = 𝑃 𝑑𝑖𝑎𝑔 (𝑠𝑐𝑎𝑙𝑒(𝑌1), 𝑠𝑐𝑎𝑙𝑒(𝑌2), … , 𝑠𝑐𝑎𝑙𝑒(𝑌𝑝)) 𝑃𝑇                    (15) 

where 𝑠𝑐𝑎𝑙𝑒(𝑌𝑖) is a robust measure of scale for each orthogonalized variable [31]. 

 

 

The Olive Hawkins (OH) estimator is a robust alternative for computing the covariance matrix in 

multivariate data analysis, particularly suited for datasets that may contain outliers. Named in honor 

of researchers Olive and Hawkins, this method aims to iteratively adjust the impact of outliers on the 

covariance structure to determine a more resilient covariance matrix. The OH estimator reduces the 

influence of extreme data points on the covariance matrix by assigning varying weights to the observa-

tions and iteratively adjusting these weights for a more stable estimate. It works through the following 

steps: 

• Initial Mean and Covariance Estimate: An initial Mean Vector (μ0) and Covariance Matrix (Σ0) 

are computed using a subset of the data to provide a starting point. This initial subset can be 

chosen using methods like MCD or FMCD to get a preliminary robust estimate [33]. 

• Weight calculation based on Mahalanobis distance: The Mahalanobis distance (𝐷𝑖), is calcu-

lated for each data point (𝑥𝑖) based on the current mean and covariance estimates where: 

𝐷𝑖 = √𝐷2                                                                                               (16) 

Then, a Weight (𝑤𝑖) is assigned to each data point using a weight function that decreases with 

increasing (𝐷𝑖). A common choice is Tukey's bi-weight function: 

http://doi.org/10.24017/science.2024.1.1
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𝑤𝑖 = {(1 − (
𝐷𝑖

2
)

2

)

2

           𝑖𝑓 𝐷𝑖 < 𝑐

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                            (17) 

Where c is a cutoff parameter that determines the threshold beyond which points are considered 

outliers. 

• Re-estimate Mean and Covariance with Weights: Using the (𝑤𝑖), the Mean (μ) and Covariance 

(Σ) are re-estimated as follows: 

𝜇𝑛𝑒𝑤 =
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

                                                                          (18)  

Σ𝑛𝑒𝑤 =
∑ 𝑤𝑖(𝑥𝑖 − 𝜇𝑛𝑒𝑤)(𝑥𝑖 − 𝜇𝑛𝑒𝑤)𝑇𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

                             (19) 

• Iterative Refinement: The process of calculating (𝑤𝑖), and updating (μ) and (Σ) is repeated until 

convergence, typically when the changes in (μ) and (Σ) between iterations fall below a thresh-

old. This iterative refinement reduces the influence of points far from the central structure of 

the data [35]. 

 

 

window size (k) parameter determines the moving window size used to evaluate each data 

point. It essentially defines the scope within which we look for outliers [36]. There are some references 

and guidelines for selecting an appropriate window size from the data characteristics, and the Hampel 

filtering process involves selecting the appropriate k based on the data's characteristics and the fre-

quency of anticipated outliers. Smaller windows are better for data with many outliers, while larger 

windows are more effective for data with few outliers [37]. A common heuristic is to set k around 3 to 

5 times the expected width of an outlier, which balances sensitivity and robustness. Fine-tuning k may 

be useful for data with known noise levels or varying outlier magnitudes. For periodic data, k can be 

chosen based on the period length to accurately capture cyclic behavior. The window size should also 

consider the data's sampling rate and expected outlier duration [6], and the other is robustness vs. sen-

sitivity. A larger window size enhances smoothing and reduces outlier sensitivity, while a smaller win-

dow size increases sensitivity to short-term outliers but may cause false positives due to noise [20]. 

 

Careful threshold selection is essential to avoid triggering outlier detection for valuable data. The 

threshold determines how far a data point must deviate from the median to be considered an outlier. 

There are several steps to adjust thresholds in the Hampel filter, first calculated MAD where it is a 

robust measure of statistical dispersion used to set the threshold for outlier detection, calculated as the 

MAD from the data's median [35] where  

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖)|)                                               (20) 

where (𝑥𝑖) is the data point. The other step is threshold calculation where the selection of the scal-

ing factor for the (MAD) threshold, typically ranging from (3 to 3.5), can be influenced by the distribu-

tion of the data, levels of noise, and the objectives of the analysis. The threshold is typically set as a 

multiple of the (MAD) [38]. This aligns with the properties of the normal distribution. The formula for 

the threshold is: 

http://doi.org/10.24017/science.2024.1.1
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𝑇ℎ𝑟𝑒𝑠 ℎ𝑜𝑙𝑑 = 𝑡 ∗ 𝑀𝐴𝐷                                                                        (21) 

When (t) is the chosen threshold factor [19]. The choice of factor for outlier detection depends on 

factors like Gaussian and Heavy-Tailed Probability Distributions. For normal Gaussian data, (3 to 3.5) 

times (MAD) is recommended but higher thresholds may be needed for heavier-tailed distributions. In 

high-noise environments, a factor of (3.5) or higher minimizes false positives. In low-noise and clean 

data, a smaller factor captures true anomalies better. Empirical tests and combining MAD with other 

estimators can refine the process [39]. The final step is the scaling factor for Gaussian distribution, is 

utilized to standardize the MAD so then it can be compared to the standard deviation of a normal 

distribution. This standardization is essential because the MAD is less influenced by extreme values 

and offers a more resilient measure of variability in comparison to the standard deviation, particularly 

when outliers are present [20]. The formula is as follows: 

Threshold = 𝑡 ∗ 1.4826 ∗ 𝑀𝐴𝐷                                                   (22) 

The factor of (1.4826) is derived from the statistical relationship between the MAD and the stand-

ard deviation in a normal distribution. In a normal distribution, 50% of data falls within the MAD, and 

68% falls within one standard deviation. The relationship between the standard deviation and MAD is 

expressed as σ ≈1.4826*MAD. This relationship is based on the approximate expected value of the MAD 

for a normal distribution being approximately σ / sqrt {2}. The MAD is modified by the scaling factor 

where: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑀𝐴𝐷 = 1.4826 ∗ 𝑀𝐴𝐷                                               (23) 

The modified MAD represents variation similar to the standard in typical situations, offering a 

strong substitute for the standard deviation, which is significantly impacted by outliers. This method 

is particularly useful in the statistical analysis of data with outliers, providing a more reliable evaluation 

of variability while minimizing the impact of extreme values, especially in multivariate linear regres-

sion analysis. 

 

The Hampel identifier is a variation of the three-sigma rule of statistics that is robust against out-

liers. Given a sequence 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 and sliding window of length k, define the point-to-point median 

and standard-deviation estimates using [5]: 

𝐿𝑜𝑐𝑎𝑙 𝑚𝑒𝑑𝑖𝑎𝑛 =  𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛 ( 𝑥𝑖−𝑘 , 𝑥𝑖−𝑘+1, 𝑥𝑖−𝑘+2, … , 𝑥𝑖 , … , 𝑥𝑖+𝑘−2, 𝑥𝑖+𝑘−1, 𝑥𝑖+𝑘)                        (24) 

Standard deviation =  σi =  k ∗  median ( |𝑥𝑖−𝑘 − 𝑚𝑖|, … , |𝑥𝑖+𝑘 − 𝑚𝑖|)                                                 (25) 

where 𝑘 =
1

√2𝑒𝑟𝑓−1(
1

2
)
 ≈ 1.4826 the quantity 

𝜎𝑖

𝑘
 is the MAD. 

   If a sample 𝑥𝑖 is such that |𝑥𝑖 − 𝑚𝑖| > 𝑛𝜎𝜎𝑖 

For a given threshold 𝑛𝜎 then the Hampel identifier declares 𝑥𝑖 an outlier and replaces it with 𝑚𝑖. 

Near the sequence endpoints, the function truncates the window used to compute 𝑚𝑖 and 𝜎𝑖.  

 

𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑖 , … , 𝑥𝑖+𝑘−2, 𝑥𝑖+𝑘−1, 𝑥𝑖+𝑘)                                                                                 (26) 

𝜎𝑖 = 𝑘 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥1 − 𝑚1|, … , |𝑥𝑖+𝑘 − 𝑚𝑖|)                                                                                                   (27) 

 

 

   𝜎𝑖 = 𝑘 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖−𝑘 − 𝑚𝑖|, … , |𝑥𝑛 − 𝑚𝑛|)                                                                                                (29) 

For expressions of erfinv (1-x), use the complementary inverse error function (erfcinv) instead. 

This substitution maintains accuracy. When(x) is close to 1, then (1 – x) is a small number and may be 

http://doi.org/10.24017/science.2024.1.1
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rounded down to 0 causing numerical instability in (1−x), this leads to potential rounding errors in 

floating-point computation. Instead, replace erfinv (1-x) with erfcinv (x)]. To ensure that the substitu-

tion is mathematically accurate and computationally stable, (x) must be specified as a positive number 

within the interval 0 < x ≤ 1, since the function erfcinv (x) is only defined for x > 0; for x≤0, erfcinv (x) 

lacks meaning or mathematical definition [35]. 

 

MSE is a common metric used to evaluate the performance of filters, including the Hampel filter. 

In the context of the Hampel filter, MSE can be used to quantify how well the filter reduces noise and 

outliers from the data, comparing the filtered data to the true or expected values. The MSE measures 

the average squared difference between the estimated values (filtered data) and the actual values (true 

data). It is given by: 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)

2
𝑛

𝑖=1
                                                                                                                                  (30) 

Where: (𝑦𝑖) are the true values, (ŷ𝑖) are the filtered values, and (n) the number of estimated param-

eters [40]. The MSE is a crucial metric for evaluating the performance of Hampel filter. It quantifies the 

filter's effectiveness in reducing noise and outliers [1]. Comparing the MSE of the Hampel filter with 

other models or methods, such as those without the filter or using different outlier detection techniques, 

is beneficial. A lower MSE indicates the filter's effectiveness [40]. 

 4.     Results 

The proposed method involves choosing the optimal window size (k) and optimal threshold pa-

rameter (nd) values that produce the minimum MSE of the multivariate regression models (MRM) and 

treating outliers (in the dependent variables or both independent and dependent variables) through 

the following steps: 

 

Step 1:  Set k = 3 and nd = 0.1, 0.15, 0.20 …, 10. Use a Hempel filter at k and all nd values. The parameters 

of an MRM were estimated for the filtered data at k and all nd values. The MSE value was calculated 

for each estimated MRM and determined the optimal (nd) value that gave the minimum MSE for the 

model. 

Step 2: Set optimal (nd) and k = 1, 2, …, 100. Use a Hempel filter at optimal (nd) and all k values. The 

parameters of an MRM were estimated for the filtered data at optimal (nd) and all k values. The MSE 

value was calculated for each estimated MRM and determined the optimal (k) value that gave the min-

imum MSE for the model. 

Step 3: Set the optimal (k) and optimal (nd) values. Use a Hempel filter at optimal (k) and optimal (nd). 

The parameters of an MRM were estimated for the filtered data at optimal (k) and (nd) values. The MSE 

value was calculated for the estimated MRM for the filtered data at optimal (k) and optimal (nd) values. 

    4.1 Simulation Study 

    To compare the proposed and classical methods, data for the multivariate regression model was 

generated assuming three dependent variables and four independent variables, a sample size equal to 

(100) and a parameter matrix, chosen randomly: 

2 4 3 3 6

4 3 6 5 4

6 5 4 2 2



 
  =
 
    

A random error has a multivariate standard normal distribution with some outliers added to the 

dependent variables. Outliers in the dependent variables were diagnosed using Mahalanobis distances 

and three robust methods (FMCD, OGK, and OH) as in Figure 1. 

http://doi.org/10.24017/science.2024.1.1


 

http://doi.org/10.24017/science2025.1.1                                                                             10 

  

 
Figure 1: Identifying outliers for the dependent variables (first experiment). 

Figure 1 shows how the data points are spread out based on their Mahalanobis distance on the 

horizontal axis and Robust Distance (FMCD, OGK, OH) on the vertical axis. Each point on the graph 

represents an observation in the dataset. Data points near the origin point (0,0) are considered normal, 

while the red lines indicate the threshold limits for the Mahalanobis and Robust distances, helping to 

identify potential multivariate outliers. The observations that are located beyond these limits, especially 

those in the top-right section, have high values for both metrics, showing that they deviate from the 

main data cluster. These points are considered outliers and indicate that they differ significantly from 

the majority of the dataset, noting the presence of several outliers in the dependent variables, which are 

shown in red for the first experiment. An MRM was estimated for the data from the first experiment, 

and then the residual values were computed as shown in figure 2.   

 
Figure 2: Residuals of MLM for the original data (first experiment). 

Figure 2 shows the presence of several outliers in the dependent variables, which led to unaccept-

ably large residual values. The method of treating outliers using the Hampel filter did not specify the 

http://doi.org/10.24017/science.2024.1.1
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window size and threshold parameter, especially to treat outliers in the analysis of an MRM, but rather 

relied on a default value equal to (3) in the univariate. Therefore, the Hampel filter was employed to 

treat outliers in an MRM using a window size parameter estimate equal to (sample size divided by 2) 

and a threshold parameter equal to (0.5) as a classical method (Note that the default values through the 

practical experiments were not effective in the treating of outliers in an MRM). The proposed method 

for treating outliers in the analysis of an MRM (explained in the sixth paragraph) is based on the optimal 

estimating of window size and threshold parameter through the three-step algorithm, which gives the 

minimum MSE for the model. After treating the outliers in the data of the first experiment and using 

the classical and proposed methods, the parameters of an MRM were estimated, and the residuals 

shown in figure 3 were calculated, confirming that there is a large difference in the values of the resid-

uals in favour of the proposed method.  

 

 
Figure 3: Residuals of MLM for the classical (a, c, f) and proposed (b, d, f) methods (first experiment). 

Table 1 shows the values of the optimal window size and optimal threshold parameter with the 

MSE of the proposed method being lower than the classical method. The experiment was repeated 1000 

times for different sample sizes (100, 150, and 200). According to the sample sizes, the classical method 

relied on the window size (50, 75, and 100) and threshold parameters (0.5, 0.75, and 1) respectively, and 

the average results with outliers in the dependent variables and outliers in the dependent and inde-

pendent variables have been summarized in tables 2 and 3. 

 
Table 1: Performance comparison of filtering methods based on MSE. 

Method k nd MSE 

Classical  50 0.5 6.5818 

Proposed 99 0.1500 0.1596 

Without filter ---- ---- 77.3928 

 

The results of tables 2 and 3 demonstrate the effectiveness of the classical and proposed methods 

in treating outliers in an MRM, and the proposed method with optimal parameters for window size 

and threshold was found to be more accurate than the classical method. The proposed method, with 

outliers in the independent and dependent variables, provided optimal parameter values with a much 

lower MSE than the proposed method in the presence of outliers in the dependent variables only. Dif-

ferent sample sizes (small, medium, large) were used to determine the effect of sample size on the pro-

posed method by generating data with different sizes for each simulation case on this basis. It was 

http://doi.org/10.24017/science.2024.1.1
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found that increasing the sample size leads to a decrease in the effect of outliers on estimating an MRM 

for untreated data but the efficiency of the classical and proposed methods in treating outliers and 

estimating an MRM decrease. The average window size is rounded to the nearest integer, and increas-

ing its value with the average threshold decreasing leads to higher efficiency in treating outliers com-

pared to the classical method with outliers in the independent and dependent variables. The proposed 

method in the presence of outliers in the dependent variables provided larger optimal parameter values 

for window size and threshold compared to the classical method. 
Table 2: Average MSE and optimal values with outliers in the dependent variables. 

Method Sample Size K nd MSE 

Classical  

100 

50 0.5 8.6193 

Proposed 88 0.5989 5.0380 

Without filter ----- ----- 77.6315 

Classical  

150 

75 0.75 22.8768 

Proposed 89 0.6933 5.9195 

Without filter ----- ----- 64.7112 

Classical  

200 

100 1 40.7089 

Proposed 86 0.9013 7.7503 

Without filter ----- ----- 57.4405 

 

Table 3: Average MSE and optimal values with outliers in the dependent and independent variables. 

Method Sample Size k nd MSE 

Classical 

100 

50 0.5 8.5038 

Proposed 96 0.1539 0.2432 

Without filter ----- ----- 73.0682 

Classical 

150 

75 0.75 24.6314 

Proposed 95 0.1509 0.3949 

Without filter ----- ----- 61.8120 

Classical 

200 

100 1 46.4686 

Proposed 94 0.1507 0.4613 

Without filter ----- ----- 55.7157 

   4.2. Real Data 

  Real data representing diabetic patients was taken from [2], where Relative Weight (𝑦1 ) and 

Blood Glucose (𝑦2)  represent the dependent variables, and the Insulin Levels (𝑥1, 𝑥2, 𝑎𝑛𝑑 𝑥3) represent 

the independent variable.  

 
Figure 4: Identifying outliers for the dependent variables (real data). 

http://doi.org/10.24017/science.2024.1.1
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Figure 5: Identifying outliers for the independent variables (real data).  

Figure 4 shows the presence of several outliers in the dependent variables (1, 2, 0) for three robust 

methods (FMCD, OGK, and OH), respectively, which are shown in red for the real data. Figure 5 shows 

the presence of several outliers in the independent variables (1, 3, 2) for the three robust methods, re-

spectively.   An MRM was estimated for the real data and then the residual values were computed, as 

shown in figure 6. 

 
Figure 6: Residuals of MLM for real data. 

Figure 6 shows the presence of several outliers in the real data, especially the second dependent 

variable, which led to unacceptably large residual values. After treating the outliers in the real data 

using the classical and proposed methods with outliers in the independent and dependent variables, 

the parameters of an MRM were estimated (Table 4).  
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Table 4: Regression coefficients of the real data. 

Parameter Classical Method Proposed Method Without Filter 

�̑�0𝑗 0.9863 98.1416 1.4851 76.6044 0.6264 83.2425 

�̑�1𝑗  -0.0002 -0.0119 -0.0019 0.0323 0.0009 0.0287 

�̑�2𝑗 0.0001 -0.0011 0.0003 0.0115 -0.0010 -0.0127 

�̑�3𝑗 0.0004 -0.0420 0.0005 0.0011 0.0015 -0.0044 

 

 
Figure 7: Residuals of MLM for both classical (a, c) and proposed (b) and original (d) methods (real data). 

Figure 7 shows the residuals calculated, confirming that there is a large difference in the values of 

the residuals in favour of the proposed method. The results of table 5 demonstrate the effectiveness of 

the classical and proposed methods in treating outliers in an MRM, and the proposed method with 

optimal parameters for window size and threshold was found to be more accurate than the classical 

method. The proposed method, with outliers in the independent and dependent variables, provided 

optimal parameter values with a minimum MSE. 

 
Table 5: MSE for the Real Data. 

Method k nd MSE 

Classical 23 0.5 2.0222 

Proposed 29 0.1500 0.0210 

Without filter ---- ---- 74.3802 

5.     Discussion 

The findings of this study demonstrate that outliers in multiple regression models can affect pa-

rameter estimates, leading to large residual values. A Hampel filter-modified algorithm is proposed to 

estimate optimal window size and threshold parameters. The algorithm was effective at dealing with 

outliers and achieving high accuracy in the estimated parameters, as assessed using simulation and real 

data. The diabetes data included Relative Weight y1, representing the patient's relative body mass or a 

normalized weight value, possibly adjusted for height (similar to BMI). Blood Glucose y2 was measured 

in mg/dL and is a key indicator in monitoring and diagnosing diabetes, and Insulin Levels are x1, x2, x3. 

This data is quantitative. The main goal of the Hampel filter is to increase the robustness of the statistical 
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analysis by lowering the effect of outliers, distorting the outcomes of standard techniques such as linear 

regression. 

The Hampel filter and proposed algorithm are highly efficient and accurate when treating outliers 

in MRM data. The proposed method had the lowest MSE compared to simulated and real data. The 

method performs optimally when outliers are present in both independent and dependent variables, 

yielding accurate parameter estimates. Parameter adjustments for improved results increase the win-

dow size and lower the threshold parameter, enhancing the Hampel filter's ability to handle outliers in 

multivariate regression data. Optimal parameter values provided result in a much greater minimum 

MSE than the proposed method when in the presence of outliers in the dependent variables only.  

These results highlight the importance of robust methods in multivariate linear regression analy-

sis, particularly when dealing with outliers and data contamination, such as the MSE method and Ham-

pel's MAD to address these challenges. Overall, the proposed method demonstrates superior perfor-

mance, particularly in datasets with complex or multi-variable outliers, providing a robust and flexible 

solution with minimal MSE. In this research, the proposed method provided a lower MSE than the 

Hampel filter, and we obtained higher accuracy estimated parameters for the model. 

6.     Conclusions 

In this paper, a new method is proposed for selecting optimal window size and threshold param-

eters to minimize the MSE in MRM. This approach specifically targets outliers in both dependent and 

independent variables. Although the Hampel filter was used for outlier treatment, it originally lacked 

guidance when it came to setting window size and the threshold parameters. The proposed method 

addresses this gap by optimally estimating these parameters, achieving the minimum MSE for the 

model. After comparing the classical and proposed methods, the residuals showed a significant differ-

ence in favor of the proposed method. The proposed method outperforms the classical method in treat-

ing outliers in an MRM, with the optimal window size and threshold parameter being lower than in 

the classical. Through simulations, the experiment was repeated a thousand times for each simulation 

case and the overall average was calculated for each case, proving the efficiency of the proposed 

method and its superiority over the traditional method. The results show the effectiveness of both meth-

ods.  

The proposed method with optimal parameters for window size and threshold was more accurate 

than the classical method. However, increasing the sample size decreases the effect of outliers when 

estimating an MRM for untreated data. The study reveals several outliers in the dependent and inde-

pendent variables for three robust methods (FMCD, OGK, and OH). The MRM was estimated for real 

data, and the residual values were computed. The results show there to be a large difference in residual 

values for the proposed method, especially in the second dependent variable. The study concludes that 

the proposed method outperforms classical methods. The final table shows that the classical and pro-

posed methods effectively treat outliers in MRM, with the proposed method providing optimal param-

eters and minimizing MSE. MSE in the classical method is (2.0222) and MSE in the proposed method is 

(0.0210), while MSE Without filter is (74.3802). 

Future work could focus on estimating the optimal window size and threshold parameters for 

outlier treatment in multivariate regression data. Comparative studies between the proposed Hampel 

filter and other outlier detection filters would further validate its effectiveness. Additionally, applying 

this approach to treat outliers in time series models presents an interesting avenue for future research. 
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