Supplementary Materials

Table S1: Raw replicate inhibition zone diameters (mm) of chalcone and pyrazoline derivatives against *Escherichia coli* (disc diffusion, n = 3)

Compound	Conc. (µg/disc)	Replicate 1	Replicate 2	Replicate 3	Mean ± SD
5a	2	NG	NG	NG	NG
5a	4	24.0	24.8	24.2	24.3 ± 0.6
5a	6	31.8	32.0	32.5	32.1 ± 0.5
5a	8	34.6	35.1	35.2	35.0 ± 0.7
5b	2	9.8	10.5	10.3	10.2 ± 0.5
5b	4	15.4	16.0	16.6	16.0 ± 0.6
5b	6	9.8	10.2	10.4	10.1 ± 0.3
5b	8	7.6	8.0	8.4	8.0 ± 0.4
5c	2	NG	NG	NG	NG
5c	4	19.8	20.3	20.5	20.2 ± 0.4
5c	6	32.6	33.3	34.2	33.4 ± 0.8
5c	8	34.2	35.3	35.6	35.4 ± 0.0 35.0 ± 0.9
5d	2	19.6	20.2	20.3	20.0 ± 0.5
5d	4	20.4	21.2	21.7	21.1 ± 0.7
5d	6	20.5	21.0	21.5	21.1 ± 0.7 21.0 ± 0.6
5d 5d	8	22.2	23.1	23.7	23.0 ± 0.8
5e	2	16.6	17.0	17.4	
5e 5e	4	4.8	5.0	5.2	17.0 ± 0.4 5.0 ± 0.2
	6			NG	
5e		NG 17.6	NG		NG
5e	8	17.6	18.0	18.4	18.0 ± 0.5
5f	2 4	NG 12.0	NG 12.2	NG	NG
5f		12.0	12.3	12.4	12.2 ± 0.3
5f	<u>6</u> 8	12.6	13.0	13.4	13.0 ± 0.4
5f		32.4	33.2	33.5	33.0 ± 0.8
5g	2 4	NG	NG	NG 0.4	NG
5g		7.9	8.0	8.4	8.1 ± 0.2
5g	6	21.5	22.0	22.6	22.0 ± 0.6
5g	8	30.4	31.0	31.6	31.0 ± 0.7
5h	2	NG	NG	NG	NG
5h	4	NG	NG	NG	NG
5h	6	NG	NG	NG	NG
5h	8	NG	NG	NG	NG
5i	2	NG	NG	NG	NG
5i	4	NG	NG	NG	NG
5i	6	9.7	10.0	10.3	10.0 ± 0.3
5i	8	20.4	21.0	21.6	21.0 ± 0.6
4a	2	NG	NG	NG	NG
4a	4	NG	NG	NG	NG
4a	6	NG	NG	NG	NG
4a	8	7.6	8.0	8.4	8.0 ± 0.4
Amoxicillin	2	9.7	10.0	10.3	10.0 ± 0.3
Amoxicillin	4	12.6	13.0	13.4	13.0 ± 0.4
Amoxicillin	6	14.5	15.0	15.5	15.0 ± 0.5
Amoxicillin	8	17.5	18.0	18.5	18.0 ± 0.5

Table S2: Raw replicate inhibition zone diameters (mm) of chalcone and pyrazoline derivatives against Staphylococcus aureus (disc diffusion, n = 3)

Compound	Conc. (µg/disc)	Replicate 1	Replicate 2	Replicate 3	Mean ± SD
5a	2	NG	NG	NG	NG
5a	4	23.6	24.1	24.4	24.0 ± 0.6
5a	6	31.4	32.0	32.6	32.0 ± 0.7
5a	8	34.2	35.0	35.8	35.0 ± 0.8
5b	2	NG	NG	NG	NG
5b	4	24.3	25.0	25.7	25.0 ± 0.7
5b	6	25.4	26.0	26.6	26.0 ± 0.6
5b	8	NG	NG	NG	NG
5c	2	NG	NG	NG	NG
5c	4	NG	NG	NG	NG
5c	6	34.2	35.0	35.8	35.0 ± 0.9
5c	8	37.1	38.0	38.9	38.0 ± 1.0
5d	2	NG	NG	NG	NG
5d	4	NG	NG	NG	NG
5d	6	23.4	24.0	24.6	24.0 ± 0.6
5d	8	33.2	34.0	34.8	34.0 ± 0.8
5e	2	NG	NG	NG	NG
5e	4	NG	NG	NG	NG
5e	6	19.6	20.0	20.4	20.0 ± 0.5
5e	8	29.4	30.0	30.6	30.0 ± 0.7
5f	2	NG	NG	NG	NG
5f	4	22.4	23.0	23.6	23.0 ± 0.6
5f	6	24.3	25.0	25.7	25.0 ± 0.7
5f	8	29.1	30.0	30.9	30.0 ± 0.9
5g	2	12.0	12.4	12.8	12.4 ± 0.5
5g	4	11.9	12.3	12.7	12.3 ± 0.5
5g	6	11.8	12.2	12.6	12.2 ± 0.4
5g	8	11.6	12.0	12.4	12.0 ± 0.4
5h	2	NG	NG	NG	NG
5h	4	NG	NG	NG	NG
5h	6	NG	NG	NG	NG
5h	8	16.6	17.0	17.4	17.0 ± 0.6
5i	2	21.3	22.0	22.7	22.0 ± 0.7
5i	4	32.4	33.0	33.6	33.0 ± 0.8
5i	6	33.1	34.0	34.9	34.0 ± 0.9
5i	8	34.2	35.0	35.8	35.0 ± 0.8
4a	2	NG	NG	NG	NG
4a	4	NG	NG	NG	NG
4a	6	NG	NG	NG	NG
4a	8	19.4	20.0	20.6	20.0 ± 0.6
Amoxicillin	2	19.4	20.0	20.6	20.0 ± 0.6
Amoxicillin	4	22.3	23.0	23.7	23.0 ± 0.7
Amoxicillin	6	28.2	29.0	29.8	29.0 ± 0.8
Amoxicillin	8	29.1	30.0	30.9	30.0 ± 0.9

Table S3: Correlation of ABX protons (H_a, H_b, H_x) with their corresponding carbons for pyrazoline derivatives 5a–5i, based on exact 13 C chemical shifts from the characterization data.

Compound	$Ha \rightarrow C_CH_2$	$Hb \rightarrow C_CH_2$	$Hx \rightarrow C_Hx$	O-CH ₂	O-CH ₂ carbon(s) δC
5a	3.04 (dd, 1H) →	3.77 (dd, 1H) →	5.21 (dd, 1H)	5.06 (s, 2H)	69.96
	44.26	44.26	\rightarrow 64.41		
5b	3.16 (dd, 1H) →	4.02 (dd, 1H) →	5.53 (dd, 1H)	5.22 (s, 2H)	69.90
	42.60	42.60	\rightarrow 62.17		
5c	3.21 (dd, 1H) →	4.06 (dd, 1H) →	5.29 (dd, 1H)	5.21 (s, 2H) +	69.45, 70.29
	43.84	43.84	\rightarrow 64.28	5.21 (s, 2H)	
5d	3.11 (dd, 1H) →	3.83 (dd, 1H) →	5.22 (dd, 1H)	5.08 (s, 2H)	69.45
	43.90	43.90	$\rightarrow 64.07$		
5e	3.07 (dd, 1H) →	3.61 (dd, 1H) →	5.31 (dd, 1H)	4.88 (s, 2H)	69.50
	44.21	44.21	\rightarrow 60.74		
5f	3.01 (dd, 1H) →	3.73 (dd, 1H) →	5.11 (dd, 1H)	5.00 (s, 2H) ×3	69.16, 70.20, 70.43
	43.53	43.53	\rightarrow 63.95		
5g	3.08 (dd, 1H) →	3.78 (dd, 1H) →	5.20 (dd, 1H)	4.98 (s, 2H)	69.40 (also 72.72 for addi-
	43.82	43.82	\rightarrow 63.98		tional benzylic site)
5h	3.08 (dd, 1H) →	3.79 (dd, 1H) →	5.22 (dd, 1H)	5.05 (s, 2H)	69.52
	43.85	43.85	\rightarrow 64.22		
5i	3.19 (dd, 1H) →	3.89 (dd, 1H) →	5.31 (dd, 1H)	5.17 (s, 2H)	69.81
	44.27	44.27	$\rightarrow 64.72$		

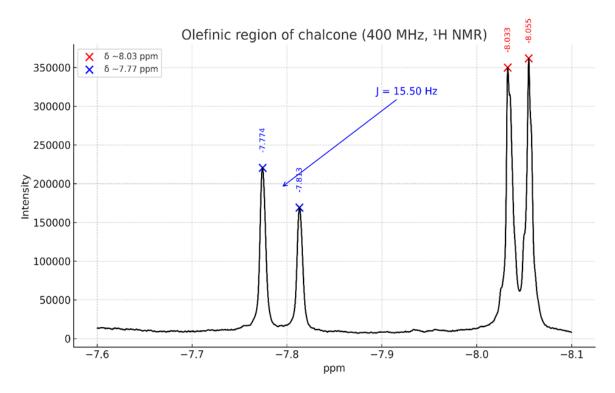


Figure S1: Olefinic region of the 1H NMR spectrum (400 MHz, CDCl₃) of the representative chalcone (4a) derivative. The trans-coupled olefinic protons appear at δ 7.77 and 8.03 ppm with a coupling constant of J = 15.5 Hz, confirming the E-configuration of the double bond.

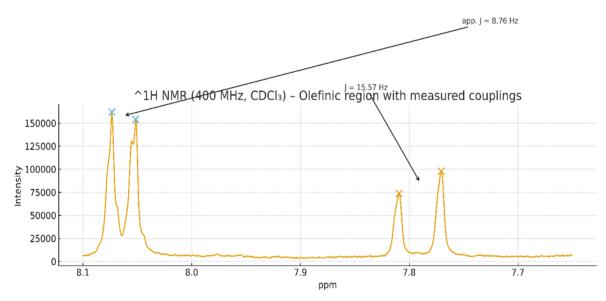


Figure S2: Olefinic region of the 1HNMR spectrum (400 MHz, CDCl₃) of the chalcone(4b) derivative, highlighting the measured coupling constants. The trans-vinylic protons resonate at δ ~7.8 and ~8.1 ppm with a coupling constant of J = 15.6 Hz, confirming the E-configuration of the double bond. An additional vicinal coupling (J ≈ 8.8 Hz) is also observed.

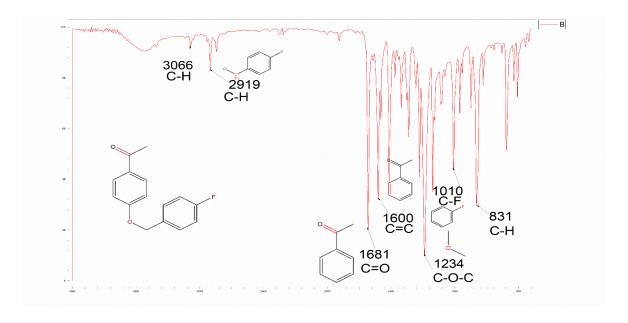


Figure S3: FTIR of 4-(4-Flourobenzyl) oxyacetophenone (1).

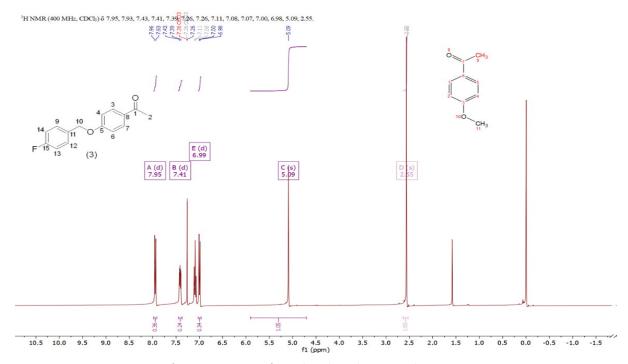


Figure S4: ¹H-NMR of 4-(4-Flourobenzyl) oxyacetophenone (1).

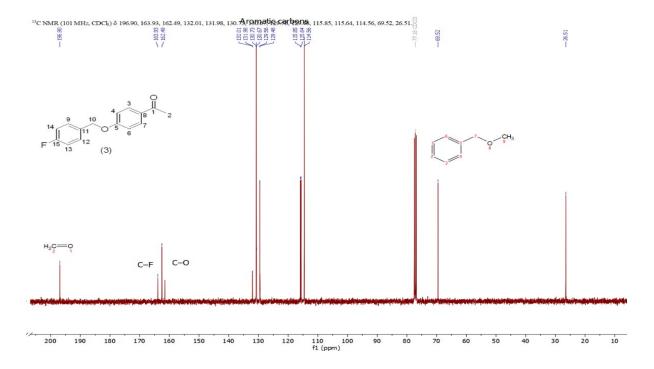


Figure S5: ¹³C-NMR of 4-(4-Flourobenzyl) oxyacetophenone(1).

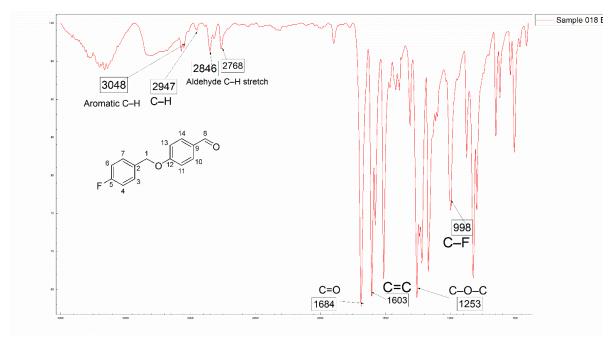


Figure S6: FTIR 4-((4-fluorobenzyl) oxy) benzaldehyde (2).

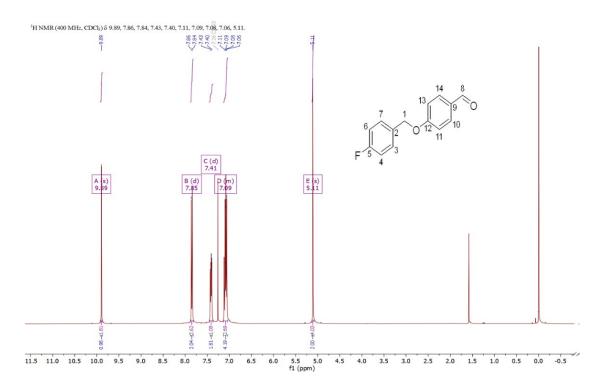


Figure S7: ¹H-NMR of 4-((4-fluorobenzyl) oxy) benzaldehyde (2).

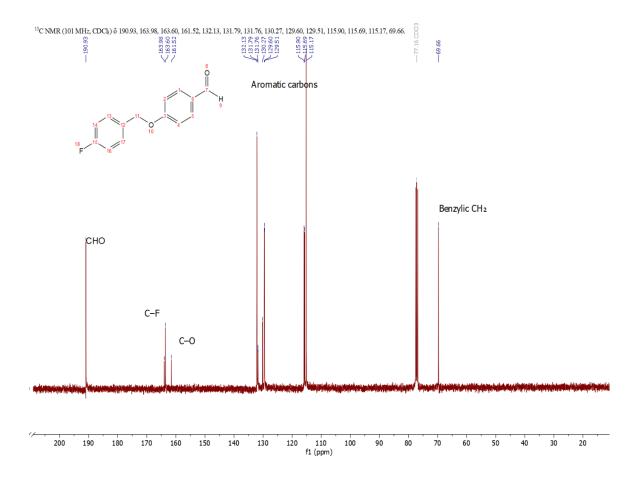
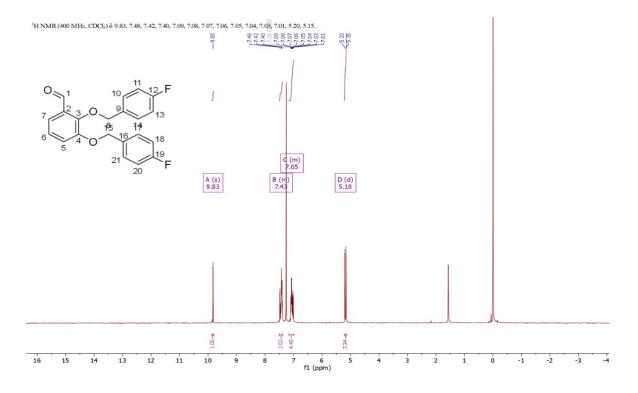
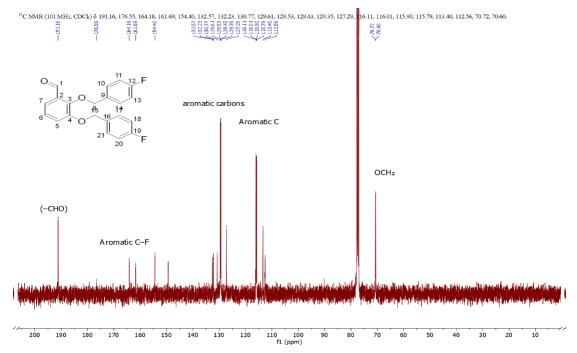
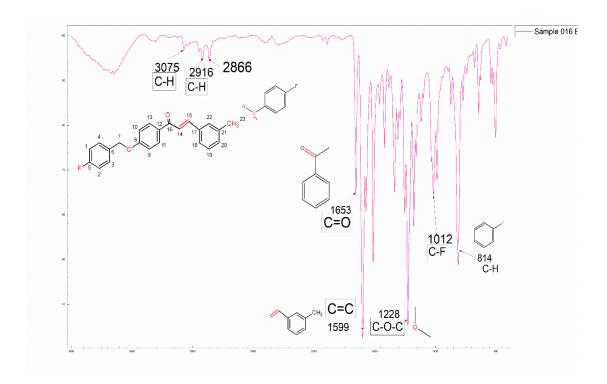
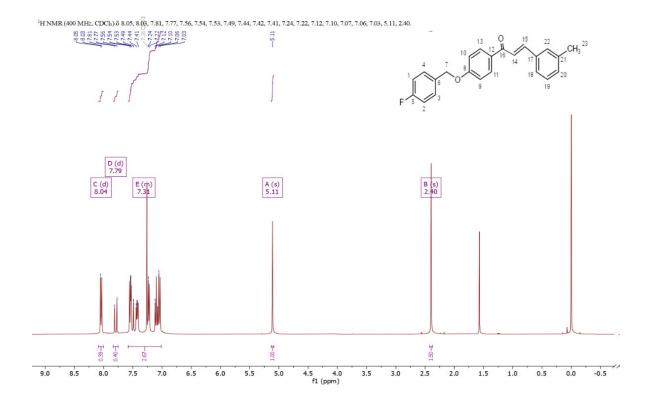
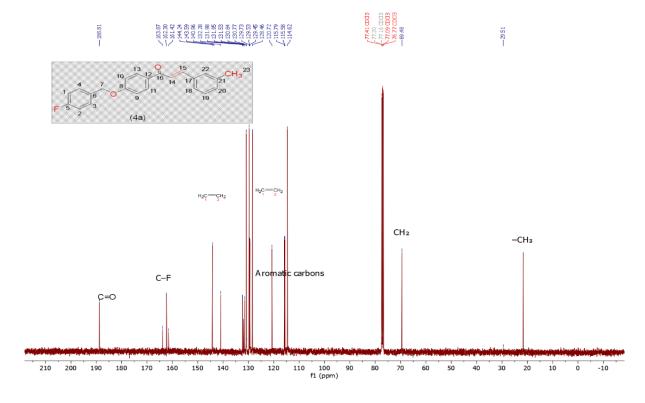



Figure S8: 13 C-NMR of 4-((4-fluorobenzyl) oxy) benzaldehyde (2).

 $\textbf{Figure S9: 1H-NMR} \quad of \ 2,3-bis (4-fluor obenzy loxy) \ benzaldehyde \ (3).$


Figure S10: ¹³C-NMR of 2,3-bis(4-fluorobenzyloxy) benzaldehyde (3).

 $\textbf{Figure S11:} \ FTIR\ of\ (4) (E) -1 - (4 - ((4 - fluor obenzyl)\ oxy)\ phenyl) -3 - (m - tolyl)\ prop-2 - en-1 - one \textbf{(4a)}$

Figure S12: ¹H-NMR of (4)(E)-1-(4-((4-fluorobenzyl) oxy) phenyl)-3-(m-tolyl) prop-2-en-1-one(4a).

Figure S13: ¹³C-NMR of(4)(E)-1-(4-((4-fluorobenzyl) oxy) phenyl)-3-(m-tolyl) prop-2-en-1-one(4a).

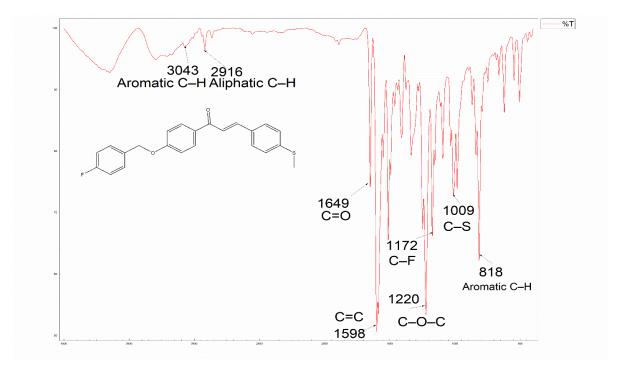
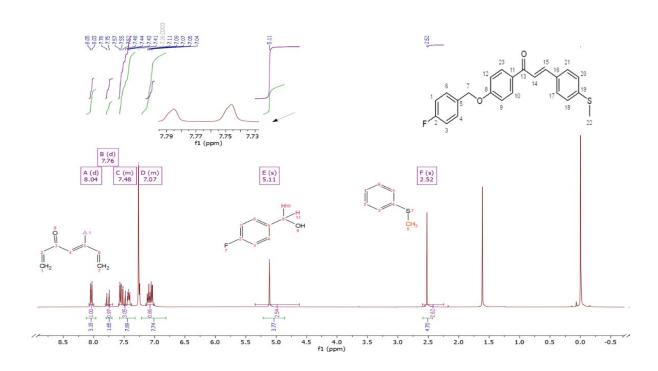
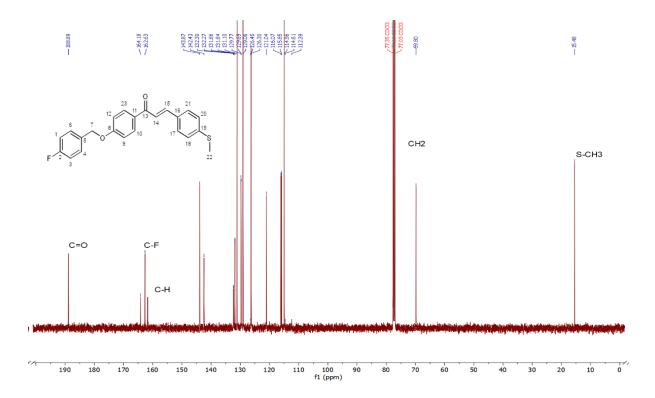




Figure S14: FTIR of (E)-1-(4-((4-fluorobenzyl)oxy)phenyl)-3-(4-(methylthio)phenyl)prop-2-en-1-one (4b).

 $\textbf{Figure S15: } ^1\text{H-NMR of (E)-1-(4-((4-fluor obenzyl) oxy) phenyl)-3-(4-(methyl thio) phenyl) prop-2-en-1-one \textit{\textbf{(4b)}}.$

 $\textbf{Figure S1:}\ 13\text{C-NMR of (E)-1-(4-((4-fluor obenzyl)oxy)phenyl)-3-(4-(methyl thio)phenyl)prop-2-en-1-one \textbf{(4b)}.$

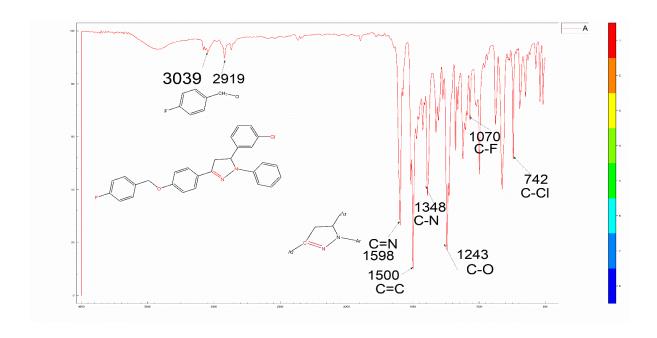
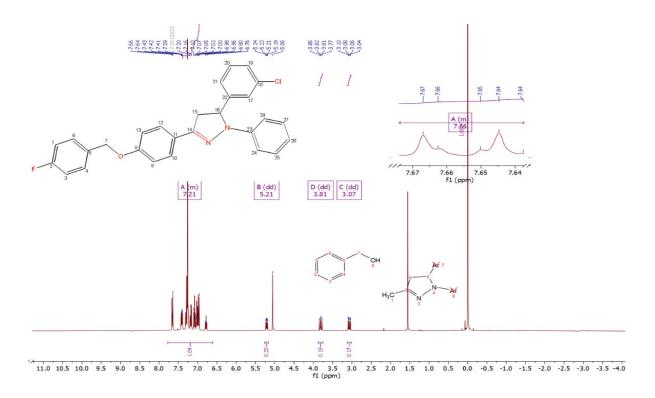
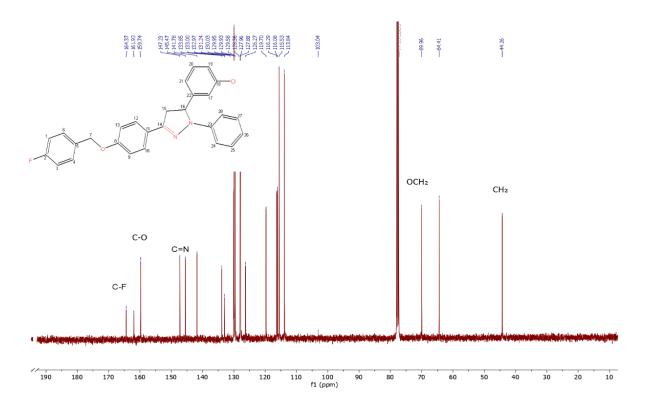




Figure S17: FTIR of 5-(3-chlorophenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5a).

 $\textbf{Figure S2: 1H-NMR of 5-(3-chlorophenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole~\textbf{(5a)}.}$

Figure S19: ¹³C-NMR of 5-(3-chlorophenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5a).

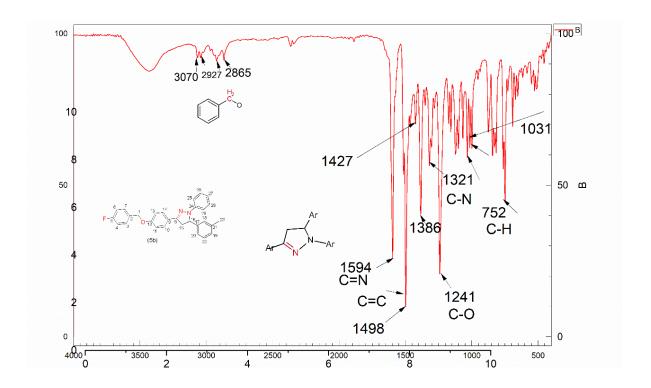


Figure S20: FTIR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-5-(m-tolyl)-4,5-dihydro-1H-pyrazole (5b).

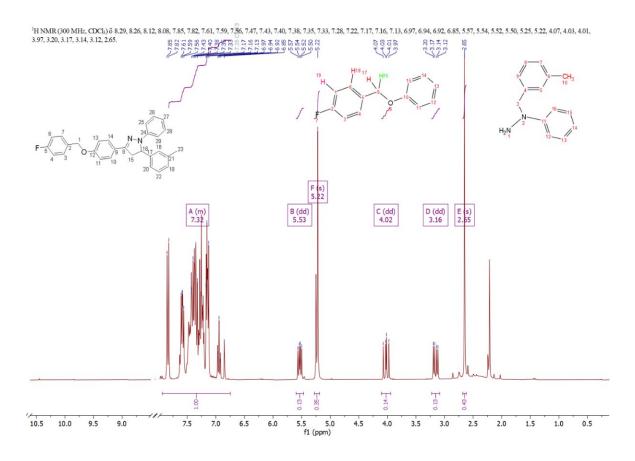
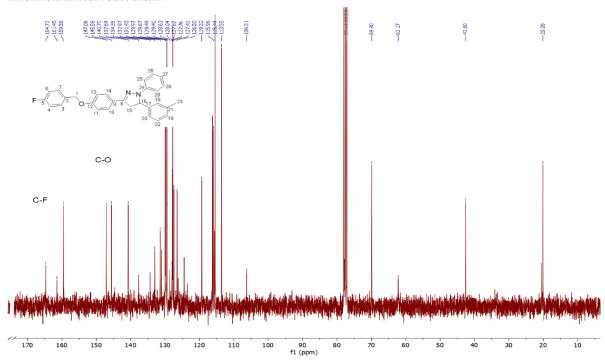
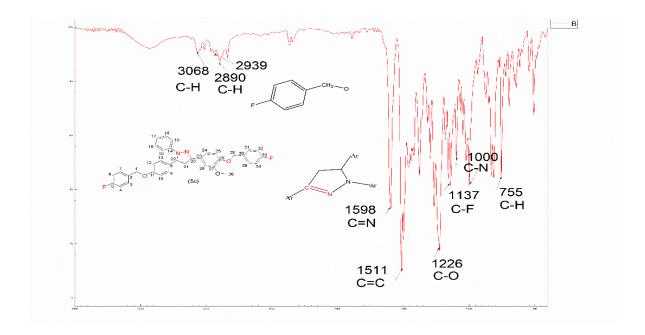
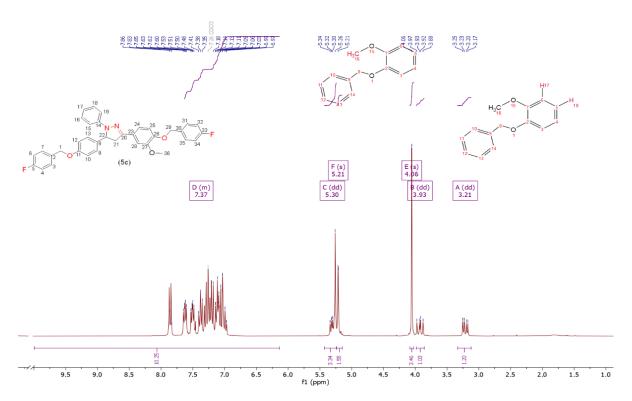
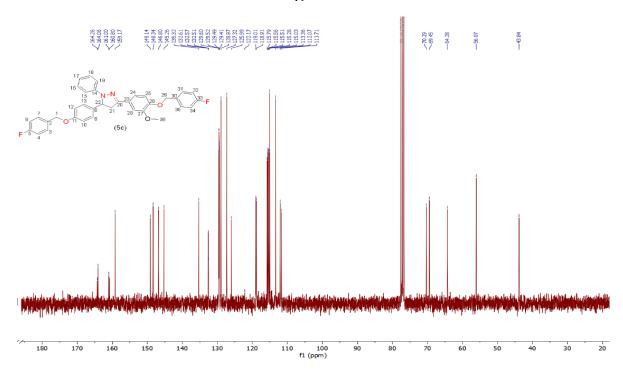
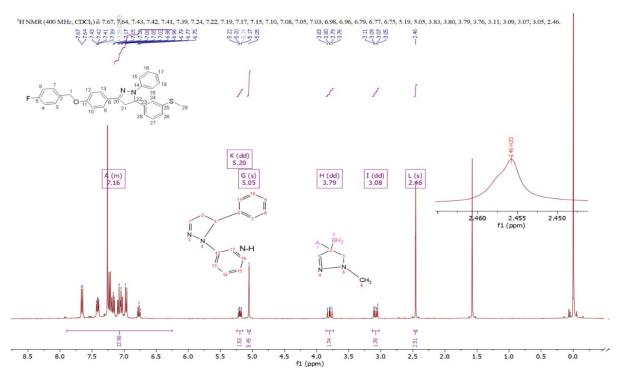


Figure S3: ¹H-NMR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-5-(m-tolyl)-4,5-dihydro-1H-pyrazole (5b).

 $^{13}\text{C NMR} \ (75\ \text{MHz}, \text{CDCh}) \ \delta \ 164.72, \ 161.45, \ 159.58, \ 147.09, \ 145.58, \ 140.70, \ 137.69, \ 134.35, \ 132.97, \ 131.43, \ 131.04, \ 129.97, \ 129.49, \ 129.40, \ 128.63, \ 128.04, \ 127.87, \ 127.76, \ 127.42, \ 126.50, \ 124.47, \ 119.32, \ 115.96, \ 115.44, \ 113.55, \ 106.31, \ 69.90, \ 62.17, \ 42.60, \ 20.09.$

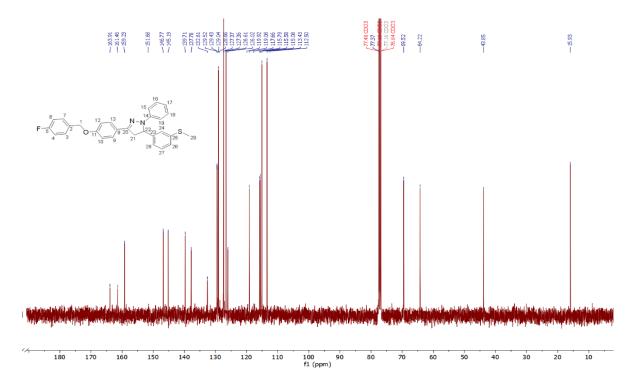
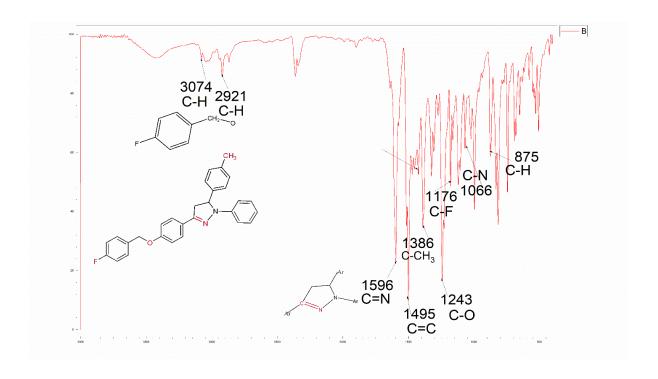
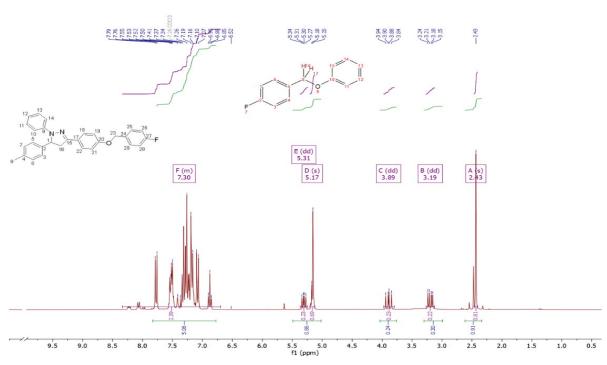

Figure S4: 13C-NMR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-5-(m-tolyl)-4,5-dihydro-1H-pyrazole (5b).

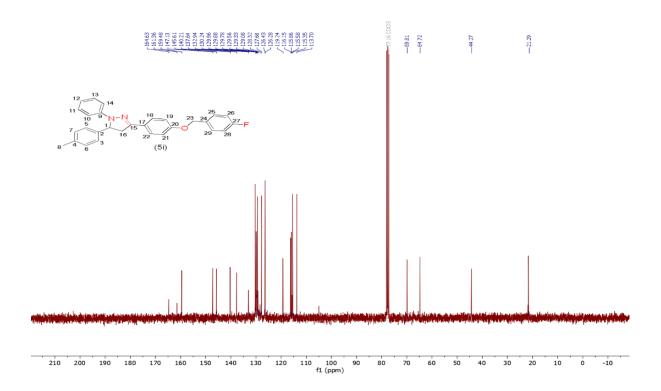

 $\textbf{Figure S5:} \ \textbf{FTIR of 3-(4-((4-fluorobenzyl)oxy)-3-methoxyphenyl)-5-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1 H-pyrazole~\textbf{(5c)}. \\$

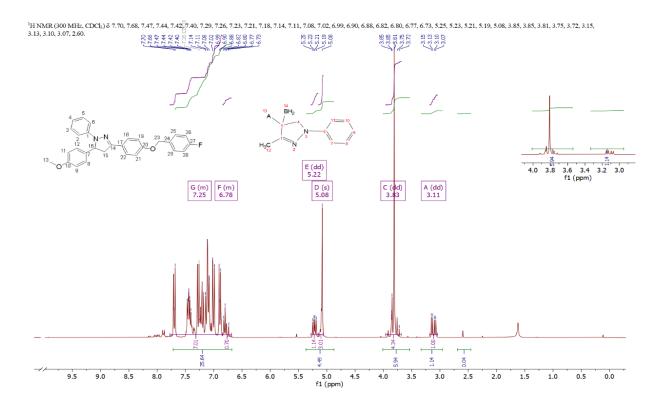
 $\label{eq:Figure S24: 1} \textbf{Figure S24: 1} H-NMR of 3-(4-((4-fluorobenzyl)oxy)-3-methoxyphenyl)-5-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (\textit{5c}).$

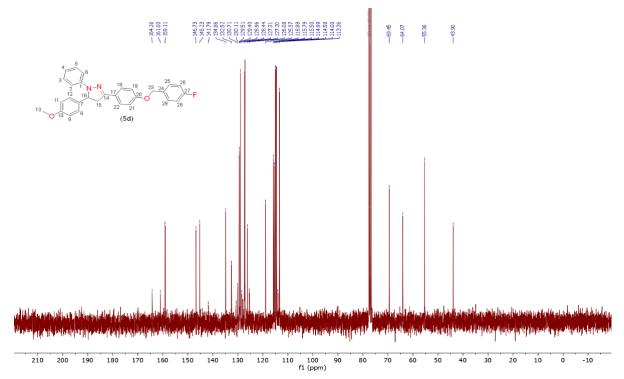
 $\textbf{Figure S25:} \ ^{13}\text{C-NMR of 3-(4-((4-fluor obenzyl)oxy)-3-methoxyphenyl)-5-(4-((4-fluor obenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole \textit{(5c)}. \\$

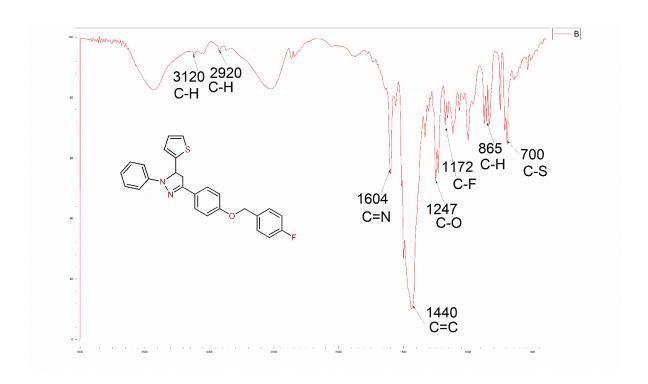
 $\textbf{Figure S26}: {}^{1}\text{H-NMR of 3-} (4-((4-\text{fluorobenzyl}) oxy) phenyl) - 5-(3-(\text{methylthio}) phenyl) - 1-phenyl-4, 5-dihydro-1 H-pyrazole \textit{(5h)}.$


Figure S6: ¹³C-NMR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-5-(3-(methylthio)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5h).


 $\textbf{Figure S7:} \ \textbf{FTIR of 3-} (4-((4-\text{fluorobenzyl}) oxy) phenyl)-1-phenyl-5-(p-tolyl)-4, 5-dihydro-1 H-pyrazole~\textit{(5i)}.$


 $\textbf{Figure S8: 1H-NMR of 3-(4-((4-fluor obenzyl)oxy)phenyl)-1-phenyl-5-(p-tolyl)-4,5-dihydro-1 H-pyrazole~\textbf{(5i)}.}$


 $\textbf{Figure S30:} \ ^{13}\text{C-NMR of 3-(4-((4-fluor obenzyl)oxy)phenyl)-1-phenyl-5-(p-tolyl)-4,5-dihydro-1H-pyrazole~\textbf{(5i)}.$

 $\textbf{Figure S9: 1H-NMR of 3-(4-((4-fluor obenzyl)oxy)phenyl)-5-(4-methoxyphenyl)-1-phenyl-4,5-dihydro-1 H-pyrazole~\textbf{(5d).} }$

 $\textbf{Figure S32:} \ ^{13}\text{C-NMR of 3-} (4-((4-\text{fluorobenzyl}) oxy) phenyl) - 5-(4-\text{methoxyphenyl}) - 1-\text{phenyl-4,5-dihydro-1H-pyrazole (5}\textit{d}).$

 $\textbf{Figure S10:} \ \textbf{FTIR of 3-(4-((4-fluor obenzyl) oxy) phenyl)-1-phenyl-5-(thio phen-2-yl)-4, 5-dihydro-1 H-pyrazole~\textit{(5e)}.$

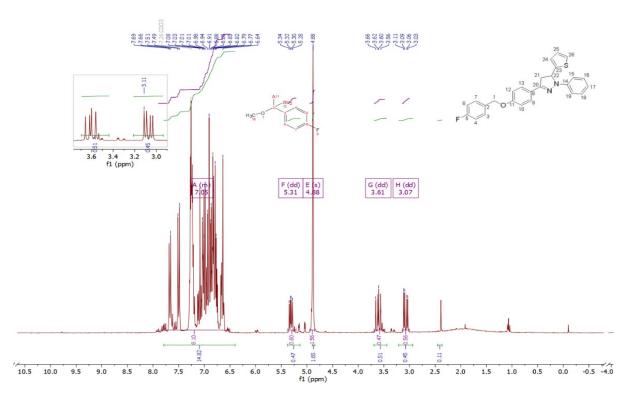
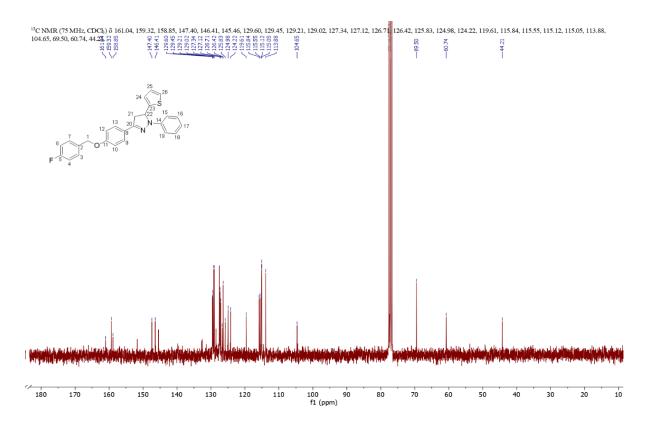
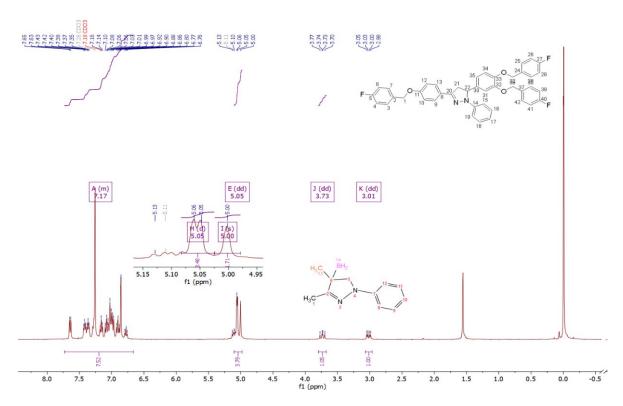
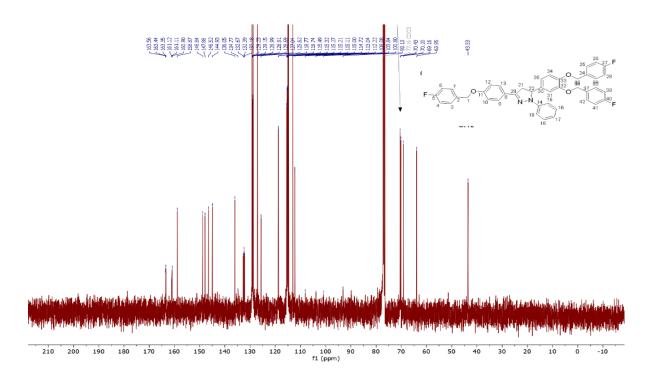
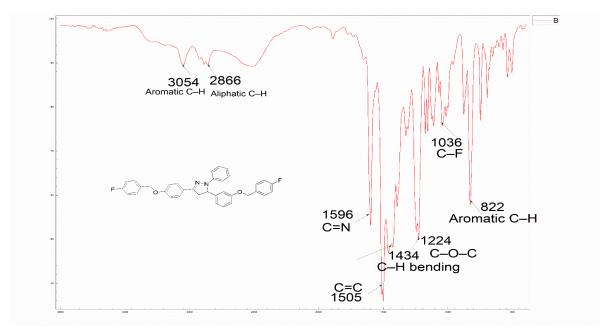
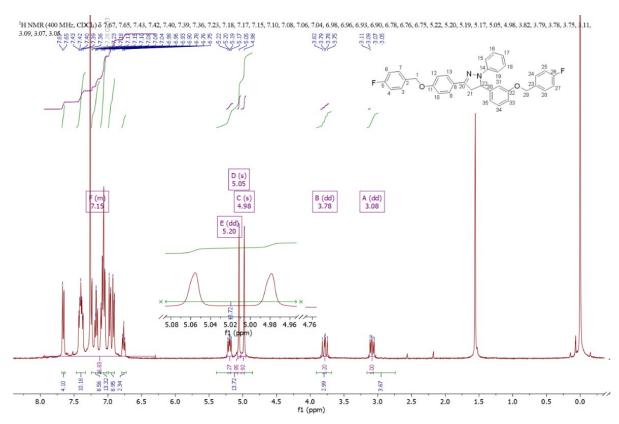


Figure S11: 1H-NMR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (5e).


Figure S12: 13C-NMR of 3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole (5e).


Figure S13: FTIR of 5-(3,4-bis((4-fluorobenzyl)oxy)phenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5f).


Figure S14: ¹H-NMR of 5-(3,4-bis((4-fluorobenzyl)oxy)phenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5f).

 $\textbf{Figure S15:} \ ^{13}\text{C-NMRof5-(3,4-bis((4-fluorobenzyl)oxy)phenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole \textit{(5f)}. \\$

 $\textbf{Figure S16:} \ \textbf{FTIR of 5-(3-((4-fluor obenzyl)oxy)phenyl)-3-(4-((4-fluor obenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole~~ \textbf{(5g).}$

 $\textbf{Figure S40: 1H-NMR of 5-(3-((4-fluor obenzyl) oxy) phenyl)-3-(4-((4-fluor obenzyl) oxy) phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole \textit{(5g)}.}$

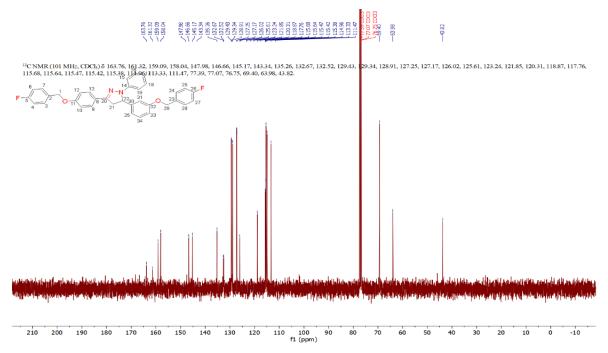
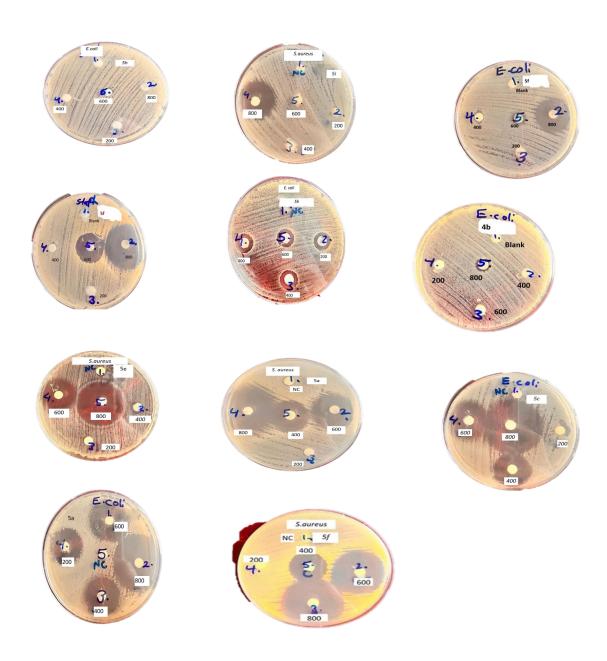



Figure S41: 13C-NMR of5-(3-((4-fluorobenzyl)oxy)phenyl)-3-(4-((4-fluorobenzyl)oxy)phenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (5g).

Figure S42: Inhibition zone of Chalcone and Pyrazoline compounds at concentration (200,400,600,800 and 1000) on E. coli and Aureus microorganism.